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NOTICES

When Government drawings, specifications, or other data are
used for any purpose other than in connection with a definitely
related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation
whatsoever, and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation,
or conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.
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INTRODUCTION
This Appendix contains the reprints published under JSEP in the time
October 1987 to September 1988.
In addition to the reprints contained herein, there are 19 papers al-
ready accepted for publication during the next contract period, 12 papers

submitted and 9 papers in preparation.
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I. INTRODUCTION

Adaptive arrays can be used to protect communication
systems from interference. This protection is achieved
when the array steers pattern nulls on the interfering
signals and pattern beams on desired signals.

Methods for employing the LMS adaptive array [1] in
several types of digital communication systems have been
developed. Th <L ., °s include conventional binary
phase-shift-key.ng (BF3K) [2], quadrature phase-shift-
keying (QPSK) [3], and binary frequency-shift-keying
(FSK) [4, 5). Recently the authors have examined the
performance of each of these communication systems
with adaptive arrays when the desired signal is corrupted
by CW interference. In [6] the performance of the LMS
array with BPSK signaling and CW interference has been
examined using the bit error probability at the receiver
output as the performance measure. The results presented
in [7] show that the performance of BPSK, QPSK, FSK,
and binary differential PSK systems with CW interference
are similar. These systems generally perform best when
the array input bandwidth is as small as possible and
when the interference arrives from an angle outside the
main beam of the quiescent array pattern. In (7] and (8]
the effects of the array bandwidth on system performance
are more closely examined.

In this paper we calculate the performance of a BPSK
communication system with an LMS adaptive array when
the desired signal is corrupted by both thermal noise and
a directional Gaussian interference signal. In general, the
performance of an adaptive array is poorer with
broadband interference than with CW interference [9].
Also, the degradation with broadband interference is
largest when the interference power is large and when the
interference arrives near endfire. Here, we examine the
effects of the interference bandwidth, the array
bandwidth, the signal power levels, and the signal arrival
angles. We show that, for a fixed input interference
power, the system performance becomes worse as the
interference bandwidth increases, up to the point where
the interference bandwidth exceeds the desired signal
bandwidth.

In [1) and [9-11] the use of tapped delay lines
(TDLs) behind the elements in an LMS array was
suggested. The TDL LMS array can reject broadband
interference since the weights can be set to optimize
performance over a band of frequencies. In this paper, we
also examine the performance of the communication
system with a TDL LMS array. We show that, with a
single broadband interference source, this array achieves
the same performance as the standard LMS array with a
zero-bandwidth interferer.

In Section Il we describe the BPSK communication
system, the LMS array, and the TDL LMS array. In
Section III we present the results from the performance
calculations. Finally, in Section IV we present the
conclusions.
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1. PROBLEM FORMULATION

Consider the BPSK communication system shown in
Fig. 1. In this system the baseband NRZ-L [12} signal is
filtered so that the signal at the filter output satisfies the

f(t) (1) TO
My (w)H,

% CHANNEL

10 11
_q::l_ cos w1
TYPICAL BASEBAND

SIGNAL

tal
SYMBOL
FROM Hy(w) | —|THRESHOLD| DECISIONS
CHANNEL R DETECTOR [

cos wdt

1a]]

Fig 1 BPSK communication systemn. (a) Transmitter (b) Receiver.

Nyquist pulse shaping criterion {13]. In order to achieve
the same bit error probability as unfiltered BPSK in white
Gaussian noise with no intersymbol interference (iSh the
baseband bandwidth of the system must be at least 1/2T
Hz ithe Nyquist bandwidth), where T is the bit duration
(14]. For simphcity, we assume here that the transmitted
signal occupies the Nyguist equivalent channel with this
minimum bandwidth. Therefore. the (double sideband)
radio frequency signal that is transmitted across the
channel has a rectangular spectrum of width /7 Hz.

The baseband transmit and detector filters required to
produce a rectangular signal spectrum are not physically
realizable. However, good approximations to many of the
members of the raised cosine family of filters are
realizable and can be used to obtain signals that satisfy
the Nyquist pulse shaping cnterion. Some of the practical
aspects of the design of narrowband BPSK sysiems arce
discussed by Bayless et al. |15} and Fcher {16].

At the receiving end. the detector filter output 15
sampled at the end of each bit interval und a bit decision
is made based upon the sign of the sample. Since we
have assumed that the baseband signal occupies the
rectangular Nyquist equivalent channel, the detector filter
is an ideal low-pass filter (LP¥) with a cutoft frequency
of 1:2T Hz. The baseband signal at this filter output
consists of a series of sine (i.e., sin(x)/x} pulses centered
about the sampling instants. The sinc pulse corresponding
to the kth bit has zero crossings at the sampling instants
for every other bit. Therefore there is nu ISI for this
signaling method.

When the desired signal 1s corrupted by zero-mean
Gaussian noise and zero-mean Gaussian interference, the
bit error probability P(e) at the detector output is given
by

P(e) = erfc( —g&——) (l)
p'l +pl

where p,, p,. and p, are the desired, interfering, and
noise powers at the output of the detector LPF and
erfc(x) is the complementary error function defined by

1 J’ ¥
erfc(x) = —= [ exp(—x2%/2)d:. 2
rfc(x) Yerd) pl—x</2) (2)
We now determine the performance of the
communication system described above when we add an
LLMS adaptive array to the system at the detector input. A

three-element LMS adaptive array is shown in Fig. 2.

d (1) (DESIRED SIGNAL)
T(t) (INTERFERENCE}

LNS

WEIGHT
<H conNTROL
CIRCUIT

e
{ERROR SIGNAL)

i .
{ARRAY QUTPUT) r(t)
(REFERENCE
SIGNAL)

Fig. 2. LMS adaptive array.

The signals that arrive at the element inputs are filtered
by ideal bandpass filters (BPFs) which limit the thermal
noise at the array input and reject out-of-band
interference. We denote by X the vector composed of the
analytic signals at the BPF outputs; that is, X = [& ()
£5(1) %', where superscript T denotes the transpose.
We similarly define the weight for the array by W, where
W = [w, w> w,}'. The array output signal §(¢) is the
weighted sum of the array input signals,

s = W'Y, (3)

We assume that the desired. interfering, and thermal
noise signals at the array input are uncorrelated zero-
mean signals. We divide the input signal vector into its
desired signal, interference, and noise components,

X=X,+X + X, (4)
where X, = {d(1) dir—T;) de-2T )1 X, = i)
i(t=T,) itr-2T)), and X, = [A,(1) A1) A(D]. In

these expressions d(1) and i(1) are the analytic desired and
interfering signals at the output of the BPF at the first
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element and #,(¢), A,(7), and A;(r) are the noise signals at
the BPF outputs. T, and T, are the interelement time
delays for the desired and interfering signals,
respectively.

We assume that the thermal noise signals at the input
to each BPF is white with a two-sided PSD of n/2
everywhere. The noise signals at the filter outputs are
mutually uncorrelated Gaussian random processes each
with power o2. We define the autocorrelation function for
the thermal noise process at the output of the jth BPF as

Ri(v) = Elnf(n;(t + 7))

= o2 sinc(wBT) exp(jw,T) 5)

where E[] denotes the expected value, the asterisk
denotes the complex conjugate, B is the BPF bandwidth
in Hz, and

o’ = 1B. 6)

The output of the LMS array is subtracted from a
locally generated reference signal, 7(), to produce an
error signal, é(1). The steady-state LMS weights
minimize the mean-square value of this error signal. The
steady state LMS weight vector is given by [1],

W==0's ™
where @ is the covariance matrix,

® = E(X*XT]. 8)
S. the reference correlation vector, is given by

S = E[X*F ). 9

Since the desired, interference, and noise signals are
independent zero-mean signals we can separate the
covariance matrix into three components,

b=9d,+d + @, (10)

where ®, = E[X5XT]. ®, = E[X*XT], and ®, =
E[X*X[]. These matrices are given by

Ry0) Ri-T,) R (-2T,)
P, =| RATY R;(0) Ri(-Ty (11)
R;(2T,) Ry(T,) R;(0)

R;(0) Ri(-T,) Ri(-2T)
® =\| R(T) RO Ri(-T) (12)
R(ZT) RiT) R(0)

R,;(0) 0 0
d, = 0 R;(0) 0 (13)
0 0 R;(0)

where R (), and R;(t) are the autocorrelation functions
for the desired and interfering signals, respectively.

_ Fig. 3 shows the power spectral density (PSD) of
d(r). This spectrum is centered about the frequency w,
and the signal bandwidth is 1/T Hz. The PSD is equal to
E, W/Hz everywhere in this region, where E,, is the
received energy per bit at each element input. We define

S~lw)
{(W/H2) 2%/7T

-

-t i -
- -

Wy Wirrs)

Fig. 3. PSD of transmitted signal.

the relative bandwidth B, of the desired signal as the ratio
of the signal bandwidth to the center frequency, that is,
2wIT
Wy
The autocorrelation function for the desired signal is
the inverse Fourier transform of the PSD shown in Fig.
3. This autocorrelation function is given by

Ri() = E[d*(nd(t + 7))

= %sinc (?) exp(jwgT). (15)

The interference is assumed to be a zero-mean
Gaussian random process with a PSD that is constant in a
bandwidth Aw; centered about the desired signal center
frequency.! We define E; to be the interference energy
received by each element during each bit interval. We
define the relative bandwidth of the interference as

B,' = Aw,»/(nd. (16)

If the interference bandwidth is wider than the bandwidth
of the element BPFs, we replace the numerator in (16)
with the BPF bandwidth so that B, represents the relative
bardwidth of the interference at the BPF outputs. The
autocorrelation function for the interference is given by

R;(r) = E[i*(t)i(t + 7))

= a?sinc (Bi;)iT) exp(jo,T) an

where o is the power in the interfering signal at the
output of each element BPF.

We assume one-half wavelength spacing between
elements at the desired signal center frequency. We
further assume that the desired signal is incident from an
angle of 0, (measured from the broadside direction) and a
single interfering signal is incident from angle ;. For the
desired and interfering signals the interelement
propagation delays are given by

Td = (L/C) sin ed (18)

']t is shown in [7] that the signal power levels at the array output do
not change appreciably even if the interference and desired signal center
frequencies differ by a few percent.
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and
T, = (L/c) sin 6, (19)

respectively, where L is the element spacing and ¢ is the
propagation velocity.

The interelement propagation delays produce
corresponding interelement phase shifts. For one-half
wavelength element spacing these phase shifts are given
by

b, = mwsin 0, (20)
and
b, = msin 9, (21)

respectively.
Using (11), and (14)-(21) we can show that the

the array output using (9). It is straightforward to show
that the power in the desired, interfering, and noise
signals are given by

1

P, = EW*‘D,,W (26)

P, = %w%b,-w (27)
1

P, = SWoW (28)

where " denotes the conjugate transpose.

From these power levels we can determine p,, p,, and
P.. the power levels at the output of the detector filter.
The desired signal power at this filter output is given by

desired signal, interference, and noise covariance matrices Py = Pa/4. (29)

are given by
B :

1 sinc ( dz(bd) e b sinc(Byd,) e I3,
E B B .

¢, = ?b sin¢ ( "?d)") e’ 1 sinc (%) e /% (22)

B .
sinc(B ) e’ 2% sinc < "zd)") e'® 1

B B
| sinc (%) e

sinc (B'Td)') e’ I

sinc(B,,) e’ 2®

where I is the 3 X 3 identity matrix. The three matrices
given in (21)-(24) are added to determine the covariance
matrix @,

We assume the reference signal is perfectly correlated
with the desired signal at the input to the first element
input and uncorrelated with the interference and noise.
Methods for generating a reference signal for the array
with phase-shift-keyed modulation are described in [2)
and |3]. The reference correlation vector, from (9), is
given by

1
S = W R‘I(T‘/) (25)
Rtl(ZT(l)

where p is a constant which is determined from the

amplitudes of the reference signal and the desired signal.
Now that we have determined @ and § we can

determine the array weights using (7) and the signals at

sinc(B,,)e 2%

sinc (%)eﬂd" (23)

(24)

The factor of 1/4 in this equation is caused by the power
loss of 1/2 that occurs during both the multiplication
(i.e., the heterodyning to baseband) and filtering
processes in the detector.

The noise power at the detector output is given by

1 1
Pn = ZP" (ﬁ) ’ (30)

The ratio 1/TB in this equation is the ratio of the detector
filter bandwidth (1/2T Hz) to the baseband noise
bandwidth (B/2 Hz). This ratio is the fraction of the
thermal noise signal that is not rejected by the detector
filter.

If the baseband interference bandwidth is less than or
equal to the detector LPF bandwidth (i.e., if B, = B,).
then p, = P,/4. However, if the interference bandwidth is
greater than the detector filter bandwidth then we must
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calculate the portion of the interference power at the array
output that lies in the frequency band to which the
detector is sensitive. We note that the interference PSD at
the array output is not necessarily white in this passband
since the array acts as a transversal filter to the interfering
signal [7). We can calculate the interference power at the
array output in the frequency band of interest using (27)
and (12). However, for the interference autocorrelation
function R;(1) in (12) we use the autocorrelation function
of the portion of the interference that lies in the band of
frequencies to which the detector is sensitive. This
autocorrelation function is given by

B T
. = g2 l29] « 1.
R;(1) = o! (3,) smc( T) 31)

With this substitution in (12) when B, > B,, p, is equal
to P,/4, where P, is given by (27). Once we have found
Pa. P:» and p, we can use (1) to calculate P(e).

Before we present the results of performance
calculations for the system described above we describe a
modified LMS array that offers improved performance in

ei
BPF BPF BPF
% X X
3 2 G3) |
LY
4
ARRAY
OUTPUT
ERROR SIGNAL
&(t) 1o
LMS FEEDBACK
LOOPS
REFERENCE
SIGNAL, r (V)
Fig. 4. Tapped delay line LMS array.
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some signal environments. As we shall show in Section
111, the conventional LMS array (i.e., the array described
above) often has difficulty nulling interference with
nonzero bandwidth. Improved performance against
broadband interference can be achieved if TDL filters are
used as the weighting elements for the array. Fig. 4 is a
block diagram of a three-element TDL LMS array. For
this array each element weight is implemented by a TDL
with a single quarter-wavelength delay element and two
complex weights. Compton [11] examined the optimum
delay line length and number of taps for suppression of a
single broadband interferer. This study indicated that the
length of the delay lines is not critical as long as it is less
than A/4B, where X is the signal wavelength and B is the
bandwidth. Also, extremely short delay lines should be
avoided since they require a larger dynamic range for the
weights. Compton also shows that, with a single
interferer with B, = 0.5, an array with 2-tap TDL
weights has essentially the same output signal-to-
interference-plus-noise ratio (SINR) that a conventional
LMS array has with narrowband (B; = 0) interference.

DESIRED
SIGNAL

ed INTERFERENCE




For the array shown in Fig. 4 we define the signals at
the tap outputs by X, through . These signals are given
by

0 = du) + i o (32)

—*

1. RESULTS

I+ this section we present the results from
performance calculations for communication systems that
use conventional LMS array and the TDL LMS array
with directional Gaussian interterence. Fig. 5 shows the

ot = dir=Tp + tu=T) + nyn (33 performance of the system using a conventional LMS
i . ' ] ) ) array for 8, = 0°. 9, = 80°. B, = 0.1, 8 = UT, and
wiy = dle=2T,) - it = 2T) + mdy) (M) pm = 8dB.? Fora given value of E/v the total
. s s interference power at the array input is the same for each
X0 = x 0 -d) (35 ~ . . .
B, value. From Fig. 5 we see that P(e) increases slightly
1) = Al —B) (36) with E,/m; however. the system performance is
i approximately equal for each of the interference
Xl = X1 - 8) (37)  bandwidths considered. For the cases shown in this figure
where 3 is the delay produced by each delay line. thc- interference is located outside the main beam of the
The 6 x 6 covariance matrices for the desired. guiescent antenna pattern. In these cases the array
intertering. and noise signals are given by e
R () RA-Tp R, -2T) R, (—d) R(-T,-8)y R, (-2T,-2d)
RAT) R,(0) R, (=T, RAT,— &) Ri(—8) R(-T,-98)
o - R, (2T RAT ROy R,2T,—-d) RyT,-8) R, (—-38) (38)
o RD) RA-T,+8 R}(—-2T,+3d) R;(0) R,(—-T) R;(—2T)) ;
RAT, ~d) R;(5) Ry(-T,+9d) RAT,H R ,(0) R, (—-T,
Ry2T,+3) RJT,+3d) R () R, 2T R,(T,) R0)
R R(-T) R (-2T) R(~8) R(-T,-3) R(-2T -%)
RAT) R,()) R,(-T) RAT, ~d) R, (-9) R(-T,~-®)
o - R.(2T) R(T) R;{0) R,2T,—8) R(T,—3d) R, (-8) (39)
' R,(3) Ri(—-T,+8) R(~-2T, +9) R;(0) R(~-T) R(-2T) )
RAT, +8) R, (D) R(-T, +9d) R(T) R, () R(-T)
R (2T, +&) R(T, +®) R;(8) R;(2T)) R.ATH R, ()
R,(0) 0 0 R,(~3) 0
0 R, () 0 0 R, (—-9) 0
0 0 R, (O) 0 0 R, (—8)
Y=Y e 0 0 R.(0) 0 0 (40)
0 R, () 0 0 R,() 0
0 0 R, (8) 0 0 R,(O)
We now can caleulate the covariance matrix for the - T -
composite mput signal using (10). effectively suppresses the interference for cach of the B,
The reference correlation vector is given by values shown.
Fig. 6 shows the system performance when 6, is
R, reduced to 407, All other parameters are the same as
R,T ) those of Fig. 5. From Fig. 6 we see that the system
§ - R,/2T ) “h performance becomes worse as the interference bandwidth
' R,5) increases. This sensitivity to interference bandwidth
RT,~ &) becomes most pronounced when the input INR i greater
RA2T, - 5) than about 10 dB. Fig. 7 shows the performance when 8,

Now that we have determined @ and § we can
determine the array weights for the TDL LMS array using
(7) and the signals at the array output using (3). We then
can caleulate the bit error probability for the detector
exactly as we did for the system using the conventional
L.MS urray.

is reduced further to 107, We see here that Ple) increases
by more than 5 orders of magnitude at large values of

INote that £, v s the per-element signal-to-nose ratio ¢SNRi The
three-clement array with nonterference provides a4 77 dB SNR
improsement. Henee the Per value at the lett-hand saide of the curves
represents the BPSK detector when the array output SNR s 12 77 dB
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B{=0.075

91 /;a +0°, 0.0/ ,0025 Zos

-10 Y T T Y T J
-20 -I0 o 10 20 30 40

Fig. 5. Performance of three-clement LMS array for several
interference bandwidths. (6, = 0°, 8, = 80°, B, = 0.1, B = /T, E,/
n =8dB)

0.075

0.02%

=91 0.0!

-10 =Y T T Y B'; o ]

20 40 O 0 20 30 40
Ei /7’ ( dB )

Fig. 6. Performance of a three-element LMS array for several
interference bandwiths. (8, = 0°, 0, = 40°, B, = 0.1, B = /T, E/
n=284dB)

E,/m for each of the interference bandwidths considered.?
The increase in P(e) for INR values below about 10 dB

is caused by the insertion loss for the desired signal that
occurs when the array forms the null on the interference.
An array with more elements would have better resolution
and would be better able to steer pattern nulls and
maxima close together.

The smallest bandwidth considered is labeled 0* to indicate a very
small but finite interference bandwiddh. If the intetference bandwidth
were truly 0, the interference would be a CW signal and not an ergodic
Gaussian random process as we have assumed.

-‘e T L) 1

-20 -10 0 0 20 30 40
E,/7 (dB)

Fig. 7. Performance of three-element LMS array for several
interference bandwidths (8, = 0°, 0, = 10°, B, = 0.1, 8 = T, E,/
n =8dB)

Two somewhat conflicting processes occur as we
move the interference arrival angle from 80° to 10°. First,
the system performance generally decreases as we move
the desired and interfering signals closer together. This
decrease is caused by the increase in insertion loss for the
desired signal as we move the pattern null closer to the
desired signal direction. The second process that occurs
as we move the interference closer to the broadside
direction is the improved ability of the array to steer a
broadband null on the interference. This ability is a result
of the reduced interelement propagation time for the
interference for small 8; values. In the limiting case,
when 8, = 0° (and T; = 0), the array can steer an
infinite bandwidth null on the interference.

From Figs. 6 and 7 we see that the system
performance becomes worse as the interference bandwidth
increases. However, in each of the cases shown in these
figures, the interference lies totally within the bandpass of
both the input BPFs and the detector LPF. In order to
better understand the effects of the array input bandwidth
and the interference bandwidth on the system
performance, we examine this performance for 4 cases:

Case A:B, =0.1,0* =B, <0.075, B = IUT.
Case B: B, = 0.01,0* < B, <0.075,.8B = 1T.
Case C: B, = 0.1,0* < B, < 0.075, B = 20/T.
Case D: B, = 0.01, 0* = B, < 0.075, B = 20/T.

In each case 8, = 40°, 6, = 60°, and E4/m = 8 dB.
In case A the array bandwidth is equal to the desired
signal bandwidth and the interference bandwidth is
always less than the array bandwidth. For Case B the
desired signal bandwidth is reduced by a factor of 10.
The array input bandwidth is also reduced by this factor
since B = /T in both cases A and B. In case B some of
the interference signal is blocked by the input BPFs when
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B, 15 greater than 0.01. B = 20/T for cases C and D. The
other variables are the same as in cases A and B,
respectively.

Fig. ¥ shows the system performance for case A.
From this figure we see that the system becomes sensitive
to the bandwidth of the signal for values of E /v greater
than approximately 10 dB.

0O
-1
-2

-3

o6 [P (e) |
&> o =

'
-
1

¥ T —

RN T T
-20 -10 0 10 20 30 40
E, /7 (dB)

Fig % Pertormance of three-clement LMS array for several
interference bandwidths, case A

Fig. 9 shows the results for case B. The two curves in
this figure that show the performance when 8, = 07 and
B, — 0.01 are the same as the corresponding curves in
Fig &. For these cases the interference is passed entirely
by the input BPFs and we see the same performance that

¥ T T
-20 -0 G 10 20 30 40
bie 9 Pertormance of three-element 1.MS array for several
interference handwiths, case B

we had for case A for these B, values.' For the other
cases shown in this tigure the input BPFs reject some of
the interference and the performance improves as the
interference bandwidth increases. Therefore, for the
minimum bandwidth system (i.e., when B = 1/T) a
fixed-power interference signal is most disrupting when
its bandwidth is equal to the desired signal bandwidth.
Fig. 10 shows the results for Case C. As in Case A,
the interference is passed by both the input BPFs and the

07 0075
0 %
14
_2 /
0025
-37 0017
-4 8 =0
[ Y
a -5
8 6
-7
_8-
-9
-10 §
20 o @ 10 20 30 40

Fig 10 Performance ot three-clement 1MS array for several
interference bandwiths. case C.

detector filter. The only difference between Cases A and
C is the increase in the array bandwidth by a factor of 20
for Case C. We sce that this increase has two effects.
First. a large hump appears in the P(e) versus E./m
curves. This hump is caused by the larger thermal noise
power at the BPF outputs for the larger value of filter
bandwidth. As the input interference power increases. the
array does not begin to form a null on the interference
until the interference and noise power levels at the BPF
outputs are approximately equal. In case C. the residual
interference power at the array output when £,/ v is
between approximately S and 25 dB causes the hump in
the curves. The second effect that we note is the
movement of the point where the curves begin to diverge.
In case C. where the noise power at the BPF outputs is
13 dP higher than it is in case A, the E;im value where
the curves begin to diverge 15 approximately 13 dB higher
than it is in case A.

Fig. 11 shows the results for case D. For this case the
interference is always passed by the input BPEs, but it s
partially rejected by the detector LPF when B, > 0.01.
When B, increases above 0.01 two conflicing processes
occur. First, the total interterence power at the array

*We note that the array pertormance is essentally independent ot 8,
for B, < 0 1 (9}
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Fig 11 Peformance of three-element LMS array for several
interference bandwidths, case D.

output increases since the array has more difficulty
nulling a broadband interfering signal. Second, the
detector LPF rejects some of the interference. The first of
these effects causes an increase in P(e) while the second
effect causes a decrease in P(e). From Fig. 11 we see
that the second effect is dominant for the case D signal
scenario. P(e) is highest when the interfering bandwidth
is equal to the desired signal bandwidth.

We next examine the performance of the three-
element TDL LMS array with Gaussian interference. As
an example we consider the same signal scenario used in
case A above. Fig. 12 shows the performance of the TDL
LMS array for this scenario. From this figure we see that
this array achieves the same performance for each of thc
B, values that the conventional LMS array had for
B, = 0. These results support the conclusion made by
Compton in [11] that, with a single interference signal
(with B, less than approximately 0.5), the TDL array
performance is equal to that of the conventional array
with CW interference.

B;=0*, 0.01,0.025
005,8 0075

2 -0 O 10 20 30 40
€;/m (dB)

Fig. 12. Performance of three-clement tapped delay line LMS array
for case A.

IV. CONCLUSION

In this paper we have calculated the performance of a
BPSK communication systern that uses an LMS adaptive
array to protect the system from Gaussian noise
interference. We showed that the system performs best
when the interference is located outside the main beam of
the quiescent array pattern. The system is most vulnerable
to broadband interference when the interference arrives
from a direction near endfire since this is the direction
where the interelement propagation delay for the
interference is largest. We found that the system
generally performed best when the array bandwidth was
as small as possible. The interference was found to be
most effective when its bandwidth was equal to the
desired signal bandwidth. This was found to be true
regardless of the array bandwidth. Finally, we found that
the performance of a system using the TDL LMS array is
not dependent upon the interference bandwidth for a
single interfering signal.
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Adaptive Array Behavior
with Periodic Phase
Modulated |f_1terference
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We cousider a least mean square (LMS) adaptive array (1]
recelving » phase modulated interference signal. The phase
modulation is assumed to be periodic and to have finite bandwidth.
Under these assumptions, we determine the time-varying array
weights, the modulation on the array output desired signal, and the
time-varying output interference-to-noise ratio (INR) and SINR
(signal-to-interference-plus-noise ratio).

We present numerical results describing the behavior of a 2-
element adaptive array that receives an intetference signal with
sinusoidal phase modulation. We show how each signal parameter
(arrival angle, power, modulation index, and modulstion frequency)
affects the performance of the srray.
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. INTRODUCTION

The performance of a least mean square (LMS)
adaptive array (1] can be affected by modulation on an
interference signal. For example, pulsed interference can
make the weights in an adaptive array vary between two
sets of values, one when the interference is on and the
other when it is off [2]. Interference modulation has two
deleterious effects on an adaptive array. First, it can
cause the array to modulate the desired signal. Second, it
can make the array output SINR (signal-to-interference-
plus-noise ratio) vary with time. In s digital
communication system, such SINR variation usually
results in an increased bit error probability. The effects of
interference modulation on an array are usually most
significant when the modulation rate is close to the
natural response speed of the array and when the
interference arrival angle is close to that of the desired
signal [2-4].

In previous studies, the authors have examined the
effects of pulsed interference (2], interference with
sinusoidal envelope modulation {3], and interference with
arbitrary periodic envelope modulation [4] on adaptive
arrays. Each of these studies involved envelope
modulation but not phase modulation.

The purpose of the present paper is to extend the
carlier work to the case of phase modulated interference.
In Section 11 of this paper, we formulate the problem of .
an adaptive array receiving an interference signal with ~
periodic phase moduiation. We solve for the resulting
time-varying weights in the array, and from the weights
we determine the output desired signal modulation and
SINR variation. In Section IlI, we present numerical
results for a 2-element array that receives interference
with sinusoidal phase modulation. We show how the
interference modulation parameters affect the desired
signal modulation, the SINR variation and the bit error
probability when the desired signal is a DPSK
(differential phase-shift keyed) communication signal.
Section IV contains our conclusions.

Il. FORMULATION OF THE PROBLEM

Assume an adaptive array consists of J isotropic
elements with half wavelength spacing, as shown in Fig.
1. Let %;(1) denote the analytic signal received on element
J. The signal £,(¢) is multiplied by a complex weight w;
and then summed to produce the array output §(f). The
array weights are controlled by LMS (least mean square)
feedback loops [1], which obtain each weight w, by
integrating the product of £,(1) with the eror signal é(?).
The error signal is the difference between & reference
signal 7(?) and the array output £(r) (1]. The armay
weights satisfy the differential equation
dw

— + kOW = kS

dt M
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where W = [w,, wy, ..., w,]T is the weight vector, ¢ is
time, @ is the covariance matrix,

& = E[X*X7] (2)
S is the reference correlation vector.
S = E[X*r(n) 3

and k is the LMS loop gain. In these equations. X is the
signal vector,

X =[x, 50, .., 5, 0]F 4)

T denotes transpose, * complex conjugate, and E|-}
expectation.

We assume a desired signal and an interference signal
are incident on the array. and aiso that independent
thermal noise is present in each element signal. The
signal vector then contains three terms,

X=X,+X +X, (5)

where X,. X,, and X, are the desired. interference, and
noise vectors. respectively.

Let the desired signal be a CW (single frequency)
signal incident from angle 8, relative to broadside (0 is
defined in Fig. 1). The desired signal vector is then

X, = Age" vy, (6)

ARRAY
ouTPUT
TN

LMS
FEEDBACK

ERROR SIGNAL

REFERENCE
SIGNAL
Fin

Fig 1. LMS adaptive array.

where A, is the amplitude, wy is the carrier frequency. b,
is the carrier phase angle, and U, is a vector containing

K=J-1 9

We assume i, is a random variable uniformly distributed
on (0,27).

Next, assume a phase modulated interference signal
arrives from angle 8,. The interference signal vector is

x, = AWy (0 (10)
with
e;ZV.")]
e;lv.u‘f,»“b.l
U,(l) = e/lv,n 21,124, (ll)

e/~ KT)- Ko

where v,(¢) is the phase modulation as received on
element 1, A, is the interference amplitude. and , is the
carrier phase angle. The variables T, and &, are the
interelement time delay and carrier phase shift,

T, = = sin 6, (12)
Wg

and

b, = wT, = wsin6,. (13

We assume ¥, is a random variable, uniformly distributed
on (0.27) and statistically independent of {,,.

Finally, we assume each element signal contains a-
zero-mean, independent Gaussian thermal voltage #,(1) of
power o?. The noise vector is

xn = {'il(')» 'iz('). cees ’i/(’)]T (14)
where
Elnrinnn] = o8, 1sjk=J (15)

with 8, the Kronecker delta. The #,(7) are assumed
statistically independent of both &, and ,.

Under these assumptions. the covariance matrix in (2)
is the sum of a desired. an interference. and a noise term.

=¢,+¢ +¢,. (16)
The desired signal term is
d, = E[X3X]) = AJUSUY. an

The interference term is

. = T
the interelement phase shifts, ®, = E(X*X]]
] P &, 1 ell\nA"" ko)
ell\;..m‘d'] | PRIYAL A e
("l\An\(.!l‘K‘bJ ('Il\n'”‘.'K"“‘b:] '.‘ ‘
= “idy “IROT
Ud_ l).? Y 4 ] '7) where
where Xpqt) = v,(1—qT) — Yy (r—=pT,) (19
¢d =7 Sin 9, (8)

and where. to simplify later notation. we let

and where p and ¢ are integers in the range 0 = p. ¢ =
K. The noise term is
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with / the identity matrix.

To compute the reference correlation vector S in (3),
we must specify the reference signal #(s). In practical
applications, the reference signal is derived from the
array output [S-7]. To make the array perform properly,
it must be a signal correlated with the desired signal and
uncorrelated with the interference. Here we assume the
reference signal to be a replica of the desired signal,

Fi) = A/ 1))
where A, is its amplitude. Equation (3) then yields
S = AAUS. (22)

When (16) and (22) -are substituted into (1), one finds
that the weights satisfy a system of differential equations
with a constant vector S on the right but with time-
varying coefficients due to ®,. This equation may be
solved for the weights as follows.

First. we write the interference covariance matrix in a
more compact form. We define the J vectors,

Vo = (1,0,0,....0,0]7
V, =0, e7’%,0,...,0, 07
V, = 0.0, e/, ...,0,0]7

Vi = 10.0.0, ..., 0, e **)T. (23)

Note that these J vectors form an orthonormal set,

vive = %,. 0<j k=K. (24)
In térms of these vecters, @, in (18) may be written
K X
O,= A3 D emmvsy] 25)
p=0 ¢=0

so (1) becomes

dw . K K
— + k[AJUSUT + A2 3 ernnv2V]

de p=0 ¢4=0

+ oUW = kA,A,US. (26)

Next, we normalize (26). Dividing by ko? gives
dw’ X & :
T 18+ 6 3 3 e v VIIWE)

dt p=0 q=0

= %’\/CU: Q7

where

O, =1+ gUIUI

A?
&=
= input interference-to-noise ratio (INR) per element
(28)
arid where
t' = kot = normalized time. (29)

Also, note that the constant %’ on the right in (i?) will
just appear as a scale factor in the solution for W(:). It
has no effect on the array output SINR to be discussed

below. Hence we arbitrarily set = = 1 to eliminate it.
Eq. (27) is then

' K K
TR0+ 63 3 omovviwa)
4 p=0 qu0

= VE§U:. (30

Next, so that we may solve (30), we make the
assumption that the phase modulation v,(¢) is a periodic
function of time. If v,(s) is periodic, the functions
exp(jx,,(1')) are also periodic, so each of them may be
expanded in a Fourier series. To simplify later notation,
we also include the constant £, in this expansion. Thus,
we write

§,-ejx"m = 2 flpq'jlu.;:' . (3),)
= —x

where f,, is the Ith Fourier coefficient of &, exp(jx,4(f'))
and w,, is the normalized fundamental frequency of
vi(t'), ie.,

' mﬂl
Wn =5 32)
where w,, is the fundamental frequency of +v,(¢). Note that
if p = q, then x,,(¢') = 0, so the series in (31) contains
only a zero frequency term, i.c.,

Jiop = &idi0. (33)
Also, it is easily shown that

Jao = I 11pq (34)
and

Juperngeny = fipge T (35)

where T, = ko?T,, with T, given in (12).

In addition to assuming v,(?) periodic, we also assume
that the bandwidth of the interference is finite, i.c., that
(31) contains only a finite number of nonzero terms.
Specifically, suppose the coefficients in (31) are zero for
l1] > L, where L is some integer. Then

L
2 : . .
g, = A Ee ) = Y f et (36)
[+ 4 1= -
= input signal-to-noise ratio (SNR) per element Since (30) is a linear differential equation with
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periodic coefficients, the solution for W(t') is a periodic
function of time after any initial transients have died out
{8]. In this paper, we do not consider the initial
transients, but only the periodic steady-state solution.
Once initial transients are over, W(t') can be written as a
Fourier series,

Wiy = > Cpe™ (37
n= - X%

where C, is a vector Fourier coefficient. Substituting this

series into (30) and enforcing the resulting equation for

cach frequency component separately gives

L K K
(P, + jnw,NC, + E Z Eflpqv;vzc"-l

I=-L p=0 ¢=0

= &d UJ 8!10 .

Equation (38) is an infinite system of vector equations,
one for each n. To solve for the C,, we assume there is
some integer N such that the Fourier coefficients C, are
negligible for |n| > N, i.e., we assume W(i') can be
adequately approximated by a finite sum,

—x<p<x (38)

N
W'y = EA Ce™" . (39)
Such an approximation will hold because the feedback
loops controlling the array weights in W(s') are lowpass
filter loops that cannot respond above a certain speed.

If we set C, = 0O for |n| > N, then (38) yields a
finite system of equations for the remaining C,,. Each
vector C, has J scalar components, so the result is a
system of (2N + 1)J linear equations in the unknown
scalar components. One could solve for W(1') by solving
this system of equations numerically. However, solving
(38) is greatly simplified if we first express each C, in
terms of its components along the vectors V, in (23).
(Since each C, has J components, the J orthonormal
vectors V, can be used as basis vectors.) We write

K
C,= D auVt (40)
k=0

where the a,, are scalar coefficients. The coefficient a,,
is the component of C, along the unit vector V#.
Substituting (40) into (38), multiplying the result on the
left by VI (fora = 0, 1, ..., K) and using (24) yields

K
jnena,, + go Qa0 + /i-L é:of'""a'"""'
= VE,(VIUS)S,,. Osa=<K @41

where
Qu = VI®, Vi, (42)

Because we assume C, = 0 for |n] > N, the coefficients
a,, in (41) are nonzero only for |n| = N. The variable
Q.. is readily found from (23) and (28),

Qus = 8y + Egele V00, (43)

Also, from (7) and (23), one finds
VIUS = e7®%"%  0<g<Kk. (44)

Equation (41), when written out, yields a finite system of
equations of the form,

MA =B (45)

where A is a vector containing the unknown coefficients
Qg

A = lano Ong, ooy Gy BNy e
QA= 11K s Oyl o Qonix )T (46)

B is a vector obtained from the right side of (41), and M
is the matrix of coefficients obtained from the left side of
(41). The results presented below have been obtained by
solving (45) numerically.

For this method to yield accurate results, N must be
chosen large enough that at least 2LJ of the a,, are
essentially zero on each end of the vector A in (46). If
this vector has 2LJ zeros on each end, the solution
obtained from (41) will yield the same result as the
solution of the infinite system in (38). In practice, a
suitable value of N may be determined by increasing N
until the additional a,, obtained remain negligible and
until the a,, in the middle of vector A are unaffected by
further increases in N. Experience shows how large N
must be in specific cases. Once the a,, have been foynd,
the C, may be found from (40) and W(¢’) from (39).

Time-varying weights have two effects on array
performance. They cause the array to modulate the
desired signal, and they cause the array output SINR to
vary with time. These effects are calculated as follows.

Given a time-varying weight vector W(:'), the desired
signal component of the array output is .

§a1') = AWT()Uyel™ + % (47)

where wy = wy/ka?. The modulation on §,(1) is
contained in the term A,WT(1')U,, which may be written

AWTU)U, = ay(t'ye/ ™), (48)

Then a,(1') = A,JWT(¢')U,| is the envelope modulation
and n,(1') = (WT(1")U, is the phase modulation. We
define a,,(1") to be the envelope normalized to its value
in the absence of interference.

ad(l')
AJWIU

where W, is the steady-state weight vector that would
occur without interference.

Wy =(®, + ®,)7'S N (50)

($,. ®,. and S are given in (17), (20). and (22).) We
present our results below in terms of ag,(1*). rather than
ay(1"), because it is easy to see the effect of the
interference by comparing a,,(1") with unity.

The output signal powers may also be computed from
W(t'). The output desired signal power is

az,(t') = (49)

AL-RUWAIS & COMPTON: ADAPTIVE ARRAY BEHAVIOR WITH INTERFERENCE 605




—

-

s

" = =e

Pty = LEHSA1)?) = FAIIWT()UP. (£1)]
The output interference power is
P(") = § ANWTUOU()] (52)

where U,(r') is the vector of phasors in (11) but written
in terms of normalized time 1 = ko?r. The output
thermal noise power is -

P = "7 WT( )W (i), (53)

From these quantities, the output interference-to-noise
ratio

P')

t INR = 4
output INR ) (54)
and the output SINR
SINR = ——trl ) (55)

Pi(t') + P,(1")

may be computed as functions of t'.
In the next section, we apply these equations to a 2-

element array receiving interference with sinusoidal phase

modulation.

. A 2-ELEMENT ARRAY

Consider an array with two elements, soJ = 2 and
K = 1. Let the interference have sinusoidal phase
modulation.

Y.(1') = B sin(wy,t’) (56)

where B is the maximum phase deviation (or modulation
index) and w,, is the normalized modulation frequency.
From (19) and standard trigonometric identities, one finds
that

Because
J_(B) = (=D'J(B") (62)
we also have from (34),
Jno =f(‘_1;o| = (_l)'flm' (63)
To truncate the series in (60), we use the fact that
Jz)=0for |l >z + 1. (64)
Thus, we approximate
L

gelo) = 3 fio et (65)
with

, . w,T;
L={B +1} = {2Bsin ) + 1} (66)
where {r} denotes the smallest integer greater than or

equal to r.

With these assumptions, we have solved (41)
numerically for the a,; and then computed the C, and
W(t') from (40) and (39). From W(¢'), we have
calculated the envelope and phase modulation on the
output desired signal from (48) and (49) and the output
INR and SINR from (54) and (55).

We present our results as follows. In subsection A
below, we show typical curves of desired signal
modulation and output INR and SINR as functions of
time. In subsections B-E, we describe the effect of each
interference signal parameter on the desired signal
moduiation. In subsection F, we assume the array is used
in a DPSK communication system (10} and show how the
bit error probability is affected by the phase modulated
intetference.

A. Typical Waveforms

1 ™ Fig. 2 shows curves of the normalized envelope
o) = e”’ ’"‘[“"(' B ?} T2 (57) 'modulation a,,(t') for the specific case where 8, = 30,
where -

- o]

T

B’ = 2B sin (w"' ’) (58) B -0t

2 pooses N o eo--
(and T' = ko'T,). Using the Fourier series expansion |9] ° I '}Z"}o.

, °]
erwme = ¥ Jiz)el (59) z°
12 3
where J,(z) is the Bessel function of the first kind of 3
order /. we find
E,e""""' = i flm"”u"" (60 g ‘
fa -= 2 10 _
where Fo  odms oo oS 080
TiME

; ,,('"_'-L . 1') Fig. 2. 0a(r') versus time. 8, = 30°. 0, = 45°. &, = 10 dB.
fon = &J(BYe VPV, (61) €& = 30dB. fo = 10%.f; = 10"
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8, =45 ¢ =10dB, § = 30dB,f, = ;'-': = 102,

fi = ;’—1‘: = 10% and for 8 = 102, 10%, 10, and 10°.
These parameter values have been chosen to illustrate that
the envelope modulation on the desired signal can be
substantial, especially for larger values of 8. (The reason
that a,,(1') < 1 even for small B, when there is little
envelope modulation, is that a 2-element array has
insufficient resolution to separate interference at 8, = 45°
from the desired signal at 8; = 30°. The desired signal is
on the edge of the interference null and suffers the
attenuation seen in a,,(1').)

It turns out that for this 2-element array, phase
modulated interference does not cause phase modulation
on the desired signal. This result was discovered by
calculating n (1) for numerous values of 8,, €, 6,, €,,
B. and f,,. One finds that m,(r') does not change with
time regardless of the signal parameters. The reason for
this behavior is as follows. Both the amplitudes of the
two weights are equal at each instant of time. The phase
angle of each weight contains a term constant with time,
which depends on the interference ammival angle (and is
different on each element), and a term that varies
sinusoidally with time. The sinusoidally varying term has
the same amplitude but is 180° out of phase on the two
elements. When a desired signal is passed through these
weights, the phase modulation produced on the desired
signal by one weight is 180° out of phase with that
produced by the other weight. The resulting array output
signal contains only envelope modulation, no phase
modulation.

Figs. 3 and 4 show typical curves.of the output INR
and SINR as functions of time, over one period and for
the same signal parameters as in Fig. 2. The figures show
that as $ 1s increased, the average output INR increases,
the SINR decreases, and the INR and SINR variations
with time are more pronounced. The reason for this
behavior is that at low 3, the array feedback is able to
track the incoming phase modulation. But as B increases,

o1
1c*
° TIME '
o —r T Ty >
joo - 0 002% 0005 .” 00073 +0.0i0
Qe
(R 8 I(_)‘
. ‘,’ ~ o
M ’ ~
“OJ 4 0% \
88 o
c I a0t PRt a—
584; "\ \
: o \
-'1. A \
4 AR [
e [N V!
39 T V!
d " V!
1] !
" "
~ L]
3 ‘ f
]

Fig 3 Output INR versus ime 8, = 30°. 0, = 45°, £, = 10 dB.
€ =30dB.f. = 102, f;, = 10"

the rate of change of the interference phase becomes too
large for the array weights to follow.

The curves above were intended merely to illustrate
typical results. In general, one finds that the array
behavior changes substantially as the signal parameters
0,.£,.6,, ¢, /., and B are varied. In subsections B-E,
we show the effect of each of these parameters on the
desired signal modulation. Then, in subsection F, we
show how bit error probability is affected by the phase
modulated interference when the array is used with a
DPSK communication signal.

To characterize the desired signal modulation, it is
helpful to define the following quantities. First, let a,,,,
and a,,,, be the maximum and minimum values of a,,(1")
during the modulation period. Then, fet
m = aml amm . (67)

Amax
Gmay IS the peak value of the envelope during the period,
and m is the envelope variation normalized to its peak. It
may be thought of as ‘*fractional modulation®", analogous
to percentage modulation in AM. In subsections B-E. we
describe the effect of each signal parameter on a,,,, and
m.

B. The Effect of Angle of Arrival

Desired signal modulation is small when 9, is far from
8,. When 8, approaches 6, the envelope variation m
increases and the peak a,,,, drops.

Figs. 5 and 6 show typical curves of m and a,,,, as
functions of 8, for 8, = 0°, ¢, = 10dB, ¢ = 40 dB.
f» = 10% and f5 = 10%. Four curves are shown. for
B=2x10%4 x 10%,8 x 10", and 10°. It is seen
how m increases and a,,,, drops when 8, approaches 6,.
(When 6, is very close to 8,, m drops to zero. This
peculiar behavior occurs because when 8, = 6. the
desired signal is nulled. In this case it turns out that g,
and a.,,, become equal, so m drops to zero. However. the

3]

b ..‘ ' ' '.‘
i A L
., - q: - ‘ ————— B
T LY

SINR (68)

v

]
4

Y Y T =T v :
00 0,.0025 0003 . 00075 0010

] 8100
"’-

Fig. 4. SINR versus time 8, = 30°. 8 = 45° ¢, = {0dB
€ = 30dB. [, = 1077, = 10
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6; ( DEGREES) o %0 -wo, oecnges)
Fig. 5. mversus 6,. 8, = 0°, & = 10dB, § = 40 dB, /., = 10, Fig. 6. a,,, versus 6,. 8, = 0°, &, = 10dB, ¢, = 40 dB, f,, = 10°,
fo = 10% fo = 108,
behavior of m for 9, = 9, is of linle importance, since interference phase must vary rapidly enough to change
the desired signal is nulled anyway.) significantly during the time it takes for the interference

to propagate across the array. When this happens, the
. result is a time-varying interelement phase shift. (A time-
l C. The Effect of Modulation Index and Frequency varying interelement pghasc shift is electrically equivalent
The envelope peak a,,, is largest at low f,, and drops !0 a time-varying arrival angle.) The feedback then
as f,, increases. The variation m peaks at intermediate f/,.  Produces time-varying weights in response.
l Figs. 7 and 8 show typical results, for the case 8; =
30°, 8, = 45°, ¢, = 10dB, § = 30dB, fy = .
10® and for B between 2 x 10° and 10*. At high f,, D. The Effect of Interference-to-Noise Ratio
l both a,,,,, and m drop off because the array has a limited
speed of response that prevents the weights from The input INR has only a small effect on the behavior
responding to the modulation when f,, is too high. At low of a,,,, but greatly affects the envelope variation m.
fom. m is also small because, with a low modulating Figs. 9 and 10 show a,, and m versus f,, for 8, =
l frequency, the interelement phase shift for the 30°% 0, = 45°, &, = 10dB, B = 104, fo = 108 and for
interference does not vary with time. To see this, note values of §;, the input INR, between 20 and 45 dB. As
that only the interelement phase shift affects the array Fig. 9 shows, a,, is relatively unaffected by the input
l weights. (A constant carrier phase angle, such as §; in INR. However, as seen in Fig. 10, the peak value of m
(10), does not appear in the interelement phase shift and  increases quickly with input INR. The reason is that the
hence has no effect on the array weights.) In order for the larger the INR, the higher the speed of response of the
l interelement phase shift to vary with time, the loops.

00

—rrrvr—
10° 10!

Fig. 7. a,,, versusf,. 0, = 30°, 0, = 45°, §, = dB, {, = 30 dB, Fig. 8. mversusf,. 8, = 30°, 0, = 45°, §, = 10 dB, £, = 30 dB.
fo =10 £ = 10°
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Fig 9. a,,, versusf.. 8, = 30° 8, = 45°, & = 10dB, B = 10,
fo = 10%

E. The Effect of Desired Signal-to-Noise Ratio

Desired signal modulation is greatest for low SNR
and drops as the input SNR increases.

Figs. 11 and 12 show typical results. Fig. 11 shows
m and Fig. 12 shows a,,, both versus f,, for 6, = 30°,
0, = 45°, ¢, = 30dB, fo = 10%, B = 10%, and for four
SNRs (£;s) between 10 and 40 dB. As may be seen, the

peak ag,,, approaches unity and the variation m drops as
the SNR increases.

F. Bit Error Probability

To evaluate the effect of the time-varying SINR, we
assume the desired signal is a DPSK communication
signal (10]. We assume that the bit rate of the desired
signal 1s much higher than the modulation frequencies in
a,(t') and that the reference signal 7(r) is a replica of the
desired signal. As discussed in (2, 3], under these
assumptions we may obtain an effective bit error
probability P, by averaging the instantaneous bit error
probability P,(t') over one period of the interference
modulation, where

n
N o
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10° 10' 0t 0? 104
L

m

Fig. 10. m versus f,. 8, = 30°. 8, = 45°. & = 10dB, B = 10°.
fo = 108

P'(") = %e*SlNR(I'). (68)

Fig. 13 shows typical curves of P, as a function of f,,
for 6, = 30°, 08, = 45°, ¢, = 10dB, ¢, = 30dB, f; =
108 and for B between 2 x 10° and 10%. Fig. 14 shows
P, versus f,, for B = 10* and for several values of input
INR. At low f,,, when the modulating frequency is
small, P, does not depend on B. The same value of P,
would be obtained if a CW interference signal arrived
with the same INR. In the frequency range 10’ < f, <
104, B, is affected by B because this is the range where
the desired signal modulation and the SINR are affected
by B. as seen above. At high f,,, the array weights no
longer track the modulation, and P, approaches a constant
value.

IV. CONCLUSIONS

We have calculated the periodic steady-state weights
of a 2-element adaptive array receiving interference with
sinusoidal phase modulation. This interference causes the

8]
[=]
3 - E— U
10° 10' 10t 10t 10¢
fm
Fig 11, mversusf, 0, = 30°, 8 = 45° & = 30dB. B = 10*, Fig. 12. a.,, versus f,.. 0, = 30°. 8, = 45°, &, = 30dB. 8 = 10*.
fo = 10% fo = 108,
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array weights to vary periodically with time in such a
way that the desired signal is envelope modulated but not
phase modulated. We have examined the effects of the
signal parameters (arrival angles, powers, modulation
index, and modulation frequency) on the array

[
1

ek d A dad

PR LA AL M L A pa A |
0 10 10t 0% 10¢
H

Fig. 14. Bit error probability versus f.,. 8, = 30°, 8, = 45°,
& = 10dB, B = 104, fo = 10%

performance. We find that the desired signal envelope
modulation is largest when the interference arrives close
to the desired signal, when the interference modulation
index is large, when the interference power is high, and
when the desired signal power is low.
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Protection of a Narrow-Band BPSK
Communication System with an
Adaptive Array

MATTHEW W. GANZ. MeMser, 1EEE, AND R. T. COMPTON. JR., FELLOW, IEEE

Abstract—This paper describes the performance of an adaptive array
when used with narrow-band BPSK communication signals. A previous
paper [11] described the performance of an adaptive array with a
standard BPSK signal when the array bandwidth is several times the
signal bandwidth. These earlier results are extended (0 the case where the
array bandwidth is as small as possible, equal to the desired signal symbol
rate. To reslize such a bandwidth reduction, it is necessary to reshape the
BPSK signaling waveform before transmission (o prevent intersymbol
interference. This is done by passing the BPSK signal through a pulse-
shaping filter a1 the transmitter. The performance of the optimal detector
for the narrow-band BPSK signal is determined when this detector
operates behind an adaptive array that is subjected to CW interference.
The bit error probability is obtained as a function of the desired signal
and interference powers and arrival angles as well as the array bandwidth.

I. INTRODUCTION

DAPTIVE array aatennas can be used to protect

communication systems from interference. The array
suppresses interference by steering antenna pattern nulls in the
direction of the interfering signal(s). The LMS array. due to
Widrow et al. {1]. is most often suggested for communications
applications.

The LMS array steers a pattern beam in the direction of a
signal correlated with a locally generated reference signal and
steers nulls in the directions of signals uncorrelated with this
reference signal. Methods of generating a suitable reference
signal for the LMS array have been developed for several
types of desired signal modulation. such as binary phase-shift
keying (BPSK) [2], quadrature phase-shift keying (QPSK) {3],
conventional amplitude modulation (AM) [4], and frequency-
shift keying (FSK) [S]. [6].

Early adaptive array studies used the signai-to-interference-
plus-noise ratio (SINR) at the array output as the measure of
system performance [7]-[9]). However, the bit error probabil-
ity at the receiver output P(e) cannot be determined from
SINR alone [10]. Recently, the authors have examined the
performance of communications systems with adaptive arrays
using P(e) as the figure of ment [11])-[13]. These studies
considered the performance of adaptive arrays with continuous
wave (CW) interference when the array bandwidth is several
times the symbol rate of the desired signal. These studies
showed that the array performance inproves as the array input
bandwidth is reduced. However, the signal and detector

Paper approved by the Editor for Signal Design, Modulation, and Detection
of the [EEE Communications Society. Manuscript received December 4,
1986: revised April 21, 1987. This work was supported in part by Naval Afr
Systems Command under Contract N0O0019-85-C-0119 and in part by the Joint
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R. T. Compton. Jr. is with the ElectroScience Laboratory, Department of -

Electncal Engineering, The Ohio Suate University, Columbus, OH 43210.
IEEE Log Number 8716582.

models used in these studies were only appropriate when the
array bandwidth 1s several times the desired signal symbol
rate.

In this paper. we cxamine the performance of an adaptive
array with BPSK signals when the array bandwdth is as smail
as the desired signal symbol rate. In order to operate a system
in this manner, it is necessary to filter the standard BPSK
signal prior to transmission so that the signal bandwidth (in
Hz) equals the transmitted symbol rate. This narrow-band
BPSK signal allows the array bandwidth to be set equal to the
signal bandwidth without introducing intersymbol interference
(ISD). The narrow-band BPSK signal has the property that it
allows the same P(e) as conventional BPSK with white
Gaussian noise. We calculate the performance of the adaptive
array with such a signal when both white Gaussian noise and
CW interference are present. We calculate P(e) for the
combined array and BPSK detector as a function of the desired
signal and interference powers, the signal arrival angles. and
the array input bandwidth.

Section II describes the narrow-band BPSK modulation
technique and caiculates P(e) when the BPSK signal is
corrupted by CW interterence. Section III presents a descrip-
tion of the LMS array and its operation. Section IV describes
the performance of the combined LMS array and the BPSK
detector. Finally. Section V contains the conclusions.

1I. THE NARROW-BAND BPSK COMMUNICATION SYSTEM

In this section. we describe a narrow-band BPSK communi-
cation system. We calculate P(e) for this system when the
received signal is corrupted by additive white Gaussian noise
and CW interference. Fig. 1 shows a block diagram of the
communication system. The baseband nonreturn to zero
(NRZ) signal is filtered prior to carrier modulation and
transmission to limit the bandwidth of the BPSK signal. We
choose a pulse-shaping transmit filter with transfer funcuon
Ar{w) given L,

4
v lel<s
. wT T
Hr(w)= { sinc 3 )
T
0, jwlz==
T

where sinc (x) denotes sin (x)/x and T is the bit duration.

The power spectral density (PSD) of the NRZ baseband
signal at the filter input is proportional to sinc” (w77/2) [14].
Therefore, the PSD of the signal at the filter output is a
constant for |w| < =/T and zero outside this region. Since
the signal at the filter output satisfies the Nyquist pulse shaping
criterion, the system is free from ISI [15]. The filtered
baseband signal modulates a carrier signal cos (wgf). The
channel attenuates the signal and adds white Gaussian noise
and (possibly) CW interference.

0090-6778/87/1000-1005801.00 © 1987 IEEE
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The signal at the receiver is given by
Z(D=d()+i(t)+n(1) )

where

w{(t—-KkT)
———-———) €os (wal+y¥gq) (3)

d(t)=)>, Ay4b, sinc <

S Asb, -
where A, is the desired signal amplitude, b, is equal to + | or
- 1 depending on the kth transmitted bit, and ¥, is a random
variable uniformly distributed on [0, 2x]. The received
interference signal i(f) is given by

)= A, cos (w,I+,) 4)

where A, is the interference amplitude. w, is the interference
frequency. and ¢, is a random vanable uniformly distributed
on [U. 2x] that is independent of V.. n(r) is a white Gaussian
noise signal with two-sided PSD n/2.

As previously noted. the rectangular shape of the desired
signal spectrum satisfies the Nyquist pulse shaping criterion.
We therefore can minimize P(e) with white Gaussian noise
and no other interference by filtering the baseband transmitted
and received signals with appropriate filters [15]. In the
present case, the appropriate filter at both the transmitter and
the receiver is the ideal low-pass filter (LPF) with a cutoff
frequency of 1/2T7 Hz. A separate transmit ideal LPF is not
required since the PSD at the output of the transmit pulse-
shaping filter is already rectangular.

At the receiver, the signal 1s multiplied by cos (wgf + ¥4).
This multiplication coherently heterodynes the desired signal
down to baseband. The baseband signal is passed through the
ideal low-pass filler LPF with bandwidth 1/2T Hz which
limits the thermal noise without distorting the desired signal.
Although both the transmit and receive filters assumed in the
model described above are not realizable, they lead to a
straightforward mathematical formulation of the problem.
Physically realizable filters which achieve nearly optimal
performance with nearly minimal bandwidth have been built
[14]. [16].

In the absence of thermal noise or interference. a single
rectangular baseband pulse of width T centered about time
t=0, when applied to the transmit filter input, produces a
corresponding pulse at the receiver output which is of the form

As . L1
=—5 - ). 5
2, > sinc ( T) %)
The receiver samples the receive filter output at ¥ = k7 and
decides whether the kth bit was a **0"" or a **1'* based upon
the sign of this sample. Since sinc (xf/T) = O for t = kT
(and k # 0) we sec that the Oth bit produces no ISI for any
preceding or following bits.

We now determine the signals that appear at the receive
filter output when interference and noise are added in the
channel. Since the detector processing is linear, the desired
signal is still given by (5). The interference signal at the
receive filter output is given by

A,
=3 cos (T') 6)
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where I’ = [(wg — w)f + ¥4 — ¥,). Since Yy, and ¥, are each
uniformly distributed on [0, 2x), T is also uniformly distrib-
uted on this same interval [17]. Each thermal noise sample at

. the output of the receive filter is an independent zero-mean
. Gaussian random variable with variance n/47T. We denote the

noise sample at the kth bit by Z,(k).
We assume that ‘0"’ and ‘*1'° bits are equally likely. The
probability of error, given the random variable T, is given by

1 1
P(ell‘)=5P(e|“0", I‘)+5P(e|“1,“ r). N
Therefore, the probability of error is given by

P lI‘)-lP Z,(k)< 4s A, (r)]
(4 =3 n 3 2cos

+1P[Zk>Ad+A'o(I‘ 8
3 a(k) 2 2CS - (8

Since Z,(k) is a zero-mean Gaussian random variable, the
probabilities in (8) are easily evaluated. The resulting expres-
sion for the probability of error, given I', is

P(ell‘)=1erfc <Ad\/z-+A,\/?_-cos (I‘)>
2 n ]
+lerfc <Ad_\/z-—A,\[Icos(1")> 9)
2 n 7

where erfc (x) is the complementiary error function defined by

) - - ’
erfe () =—= | e dz. (10)
V2n Vs
We average this expression for P(e|TI') over the uniformly
distributed random variable T to determine P(e):

1 par )
P(e)=— r erfc <Ad \/?4-,4, \/zcos (T)> ar. dun
27 Jo ] "

Note that when we integrate (9) to obtain (11). the contribu-
tions of the crror functions are equal (and .are therefore
combined) since we are integrating over a whole cycle of .

We define E, as the received energy per bit of the desired
signal and E, as the received energy in the interference per bit
interval. Since E; = A}T/2and E, = A!T/2 we can rewrite
(11) as

1 B
Pe)=— Sz erfc ( z__E.f+ 35 cos (F)) dr. ((12)
2x Jo '\‘ 7 '\’ "

We note that if E, = O, then (12) becomes P(e) = erfc
(V2E,/n), the well-known result for standa.d BPSK signaling
in white noise. Therefore, in the absence of CW interference,
the narrow-band BPSK system achieves the same performance
as standard BPSK.

Fig. 2 shows how P(e) varies as & function of E,/r, the
interference-to-noise ratio (INR), for several values of E;/n.
and the signal-to-noise ratio (SNR). From this figure. we see
that the system performance degrades monotonically as the
INR increases. When the interference power at the receiver
input exceeds the desired signal power the bit error probability
rapidly approaches 1/2. In the next section. we examine how
the addition of the adaptive array affects the performance of
this system.

et

et
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Fig. 2. Performance of narrow-band BPSK detector with CW interference
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III. THE LMS ARRAY

In this section. we calculate the performance of the narrow-
band BPSK communication system when we add an LMS
adaptive array at the receiving end of the channel. We use
analytic signal notation for each of the signals in the array
{18]. Fig. 3 shows a three-element LMS array. The signals
that arrive at the array elements are filtered by ideal bandpass
filters (BPF's) which limit the thermal noise at the array input
and reject out-of-band interference. The bandwidth of these
filters must be a least 1/7 so that the desired signal is passed
without distortion. We shall find that the system performance
is closely related to this bandwidth and. in the next section, we
caiculate this performance for several array input bandwidths.

The signals at the outputs of the BPF's. which we denote by
Z\(1), X,(¢), and X,(f), are each multiplied by a complex weight
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Fig. 3. The LMS array.

conjugate. and S denotes the reference correlation vector
given by

S=E[X*F(1)]. (16)

We assume that the three antenna elements are linearly
armranged and one half wavelength apart. We assume that the
desired signal arrives from an angle 8, and that a single CW
interfering signal arrives from an angle 8,. Both 8, and 6, are
measured from the broadside direction.

At the output of each BPF, the thermal noise is a zero-mean
Gaussian random process with variance

oi=nB (17

where B is the BPF bandwidth in Hz. The noise signals at the
BPF outputs are assumed tc be mutuaily statistically indepen-
dent.

It is straightforward to show that. for the signal models
described above, the covariance matrix is given by

R;7(0)+ RA0) + 0? Riy(-TH)+RA(-T) Ri(-2T)+RA{(-2T)
®=| Ry(Ty)+RAT) R;(0)+ R{(0) + 02 Ri(-T)+R{(-T) 18)
RjQTH+R(2T) Ry(Ty)+RAT) R;(0)+ Ri{(0) + 02

and the weighted signals are summed to produce the array
output signal 5(r). This output signal is given by

S(=w'X a13)

where W is the weight vector, W = {w,, w;, wy]7, X is the
input signal vector, X = [£(r), (), £y(0)]7, and T denotes
the transpose.

The array output is subtracted from a locally generated
reference signal A¢) to produce the error signal &(). The
steady-state LMS weights minimize the mean-square value of
this error signal. In steady state, the LMS weight vector is
given by [18]

W=&-1s, (19)
where & is the covariance matrix, ‘
®=E[X*XT) (15)

where El®] denotes the expected value, * denotes the complex

where R, (7) and R (7} are the autocorrelation functions for the
desired and interfering signals. respectively, and 7, and 7, are
the interelement propagation delays for these signals. The
desired signal and interference autocorrelation functions are
given by

Ri(r)= A2 sinc (1_7-.r> exp (Jwat) 19
Rir)=A%esvir, 20

We assume that the reference signal is perfectly correlated
with the desired signal as seen at the input to element 1.
Therefore, from (16), the reference correlation vector is given

.by

R;(0)
Ry(Ty) Q@n
R;(2T,)

S=u
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where u is a constant that 1s detennined from the aunphtudes of
the desired and reference signals.

Now that we have determined @ and §, we determine the
array weights using (14) and the array output signals at the
array output using (13). The array output signal consists of the
desired signal, a thermal noise signal, and the residual
interference that the array was unable 10 null. These signals
are applied to the narrow-band BPSK receiver described in
Section II and P(e) 1s calculated using (12).

We assume that the interelement ume delay for the desired
signal is much shorter than the bit interval (i.e. that T, « 7).
With this assumption. we neglect any distortior in the desired
signal modulation that occurs due to the summing of the time
delaved versions of the desired signal in the array processing.

1V, REsuLTs

In this secuon. we present the results of perforrnance
calculations for the narrow -band BPSK conimumcation svstem
with the LMS adapuve array. We consider the etfects of the
desired signal power level the CW interfering signal power
level. the signal arrival angles. and the array bandwidth

In each of the cases that we exarmine in this paper. we
assume that the desired signa) relative bandwidth B, is equal 10
0.1 twhere B; = 27B 'y It 1s shown in (1%} that the signal
power levels at the array output are essentially independent of
B_ for most signal scenarios for values of B, less than
approximately /2.

First. for later comparison, we show the system perform-
ance when the array bandwidth 1< large. The results for this
case are 1denucal 1o those presented in [11) for the LMS array
with conventional BPSK signaling and CW interference. Fig.
4 shows the performance of the systermn when the jnterfering
signal arrives from an angle 80° from broadside. The array
bandwidth for the cases shown in this figure 1s 20 times the
data bandwidth or 20°'7T. When we compare Figs. 4 and 2. we
sec that the arrav docs improve the system performance.

Fig. 5 shows the performuance v ben the interference arrival
angle is reduced to 10° with the array bandwidth still equal to
20/T. For this case. the interference hies in the main beam of
the quiescent array patiern (1.e.. the array patiern with no
interference)

The most prominent features of the curves shown in Figs. 4
and 5 are humps in the P(e) versus INR curves At low INR
values. the thermal noise 1y stronger than the interference at
the array inputs. As the INR increases. the interference power
at the array output and P(e) both increase. As the INR
increases to approximately 10 dB. the array begins 10 null the
interference It is at this point that the interference and noise
powers at the array input arc equal. As the INR increases
further. the null becomes deeper and the interference power at
the array output begins to dirmmish. At very high INR values,
the null is very deep and the interference power at the array
output 15 neghgible.

Since the resolunion propernies of the threc-element array
are himited. it is more difficult for the array to null the
interference while maintaining a good response in the desired
signal direction when 6, and 6, are close Therefore. we see
better performance in Fig 4 than in Fig 5.

Fig. 6 shows the performance of the systeri when the array
1input bandwidth is reduced to 1/7. All other parameters are
unchanged from the cases shown in Fig 5. From .his figure.
we see that there are no humps in the P(e) versus INR curves
for this narrow array bandwidth Therefore we might at first
be tempted to conclude that the system performance is best

' We should note that. even with nointerference. the SHK at the output of
the three-clement array 1s 4 77 dB greater than the SNR a1 each element input
due to the array gain This 4 77 dB SNR improvement would also be seenif a
three -element fixed (1 ¢ . nonadaptivet arra) were used and the desied signal
were located at a pattern maximurm

0_ . -

Ed/-r; = 6dB

230 -20  -I0 0 10 20 30

Fig. 4. Performance of narrow-band BPSK communication svstem with
three-element adaptive array and CW interference (B = 20/7, lw, - w!
< 20x/T. 8 = 80°).
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Fig. 5 Performance of narrow-band BPSK communication system with
three-clement adaptive array and CW interference (B = 20/7, juw, - wl
< 20x/7,6 = 10°).

when the array bandwidth is as small as possible (i.e.. 8 = 1/
T). However, when we carefully compare Figs. 5 and 6. we
see that P(e) is higher for the narrow-band system than it 1s for
the wideband system at the left-hand side of the curves. Thus.
we make the unexpected observation that. for low INR values,

1
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Fig. 6. Performance of narrow-band BPSK communication system with

three-element adaptive array and CW interference (8 = 1/T, wg = wf <
#/T, 8, = 10°).
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Fig. 7. Performance of three-element array for two array bandwidths
(lws - w| < #/T, 0, = 10°, E/n = 12 dB).

the system performance improves when the noise power at the
array input increases.

For easy comparison, curves showing the performance.of
both the wide-band (B = 20/T) and narrow-band (B = 1/T)
systems are plotted in Fig. 7 for an SNR value of 12 dB. For
INR values above approximately 10 dB, the narrow-band

DESIRED
SIGNAL

INTERFERENCE

Fig. 8. Adapted antenna pattern for B = 20/T, E/n = 5 dB.

system performs better than the wide-band system. However,
for INR values below 10 dB. the wide-band system performs
better.

There is a simple explanation for this behavior. As the INR
increases. the array begins to null the interference when the
interference and noise powers at the array input are approxi-
mately equal. Therefore. the null begins to form at a lower
INR value when B = /7 than it does when B = 20/T7.
Consider the cases shown in Fig. 7 for an INR value of 5 dB.
Figs. 8 and 9 show the adapted array patterns for the wide-
band and narrow-band arrays, respectively. From these
figures, we see that the wide-band array has not fermed a null
in the interference direction and the desired signal is very close
to a pattern maximum. However, the narrow-band system has
formed a pattern null on the interference. Furthermore. since
the desired and interfering signals are spatially close. the array
no longer keeps the desired signal near a pattern maximum.
Therefore. the SNR at the array output is lower for the
narrow-band array than it is for the wide-band array for the
case shown. The increase in P(e) due to the narrow-band array
pattern null is greater than that which occurs for the wide-band
systemn due to the residual interference at the array output.

Fig. 10 shows the system performance for three different
array bandwidths, B = 1/T, B = 2/T, and B = 4/T. The
curves shown in this figure indicate that there is no value of
input bandwidth that offers a minimal P(e) for all INR values.
The curve for B = 2/T lies significantly below that for B =
1/T for INR values below approximately 12 dB. For larger
INR values, P(e) for B = 2/T is only slightly greater than
that for B =1/T. For B = 4/T, we sec even better
performance below 12 dB, but a hump is beginning to form in
the curve above 12 dB. P(e) versus INR curves were plotted
for several other values of SNR and 6; and similar results were
obtained. In each case, the humps in the INR curves appear for
B values greater than approximately 4/T.

If the array bandwidth is greater than 1/7, then the input
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Fig. 10. Performance of three-element array for three array bandwidths
(lws = w| < x/T, 8 = 10°, E;/n = 12dB).

BPF's will pass interfering signals that lie at frequencies to
which the detector is not sensitive. Although such an interfer-
ing signal will not adversely affect the detector, the array will
still respond to the interference. If the interference is spatially
close 10 the desired signal, the response in the desired signal

o-
-1

-2

-6 E4/n=6dB

LOG(l{'[P (l;)
=N
)

-7

~81 / /

-9 8 10/12/ 14

-lc T T T T I T Ll

30 -20 -0 O 10 20 30
E,/n (dB)

Fig. 11. Performance of narrowband BPSK communication system with
three-clement adaptive array and CW interference (B = 20/7, x/T < |uw,
- w! < 205/7,8, = 10°).

direction may be reduced by the null. We can calculate the
system performance for this case using the methods of Section
111 10 compute the signals at the array output and then using
(12) with E, set 1o zero to compute P(e). Fig. 11 shows the
performance of the three-element array with B = 20/7 Hz, 6,
= 10", and xT < |wy — w,| < 20%/7T. For these values of w,,
the interference is passed by the input BPF's, but rejected by
the detector LPF. In this case, the array still nulls the
interference. From Fig. 11. we see that P(e) increases with
INR due 10 the reduction in desired signal response caused by
the null on the interference. Therefore, for maximum resist-
ance to out-of-band interference, the array input bandwidth
should be made as small as possible.

V. CONCLUSIONS

In this paper, we have examined the performance of a
bandlimited BPSK system with an adaptive array. We found
that the performance with CW interference is best for array
bandwidths less than approximately 4/7 since the humps in
the P(e) versus INR curves appear for larger bandwidths.
With CW interference, whose frequency is within the pass-
band of the detector. the performance for bandwidths between
2/T and 4/T is never much worse than that for B = 1/7T (and
sometimes it is better). Therefore, we conclude that. for this
type of interference. there is little reason to expend great cost
or effort to reduce the bandwidth below 4/T. However, if the
array bandwidth is greater than 1/7, the system will be
susceptible to out-of-band interference. We found that out-of-
band interference causes a perforrnance degradation due to the
pattern null when the interfering and desired signals are
spatially close. Finally, we found that the best performance is
achieved when the interfering signal arrives from an angle
outside the main beam of the interference-free antenna pattern.
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Comparison Between Two Asymptotic Methods
ROBERTO G. ROJAS

Abstract—Two complete asymptotic expansions of an integral with
many simple pole singularities and a first-order, isolated, saddle point
evaluated by two different methods are compared. It is shown that both
expansions are exactly the same (term by term) inside and outside the
transition regions.

I. INTRODUCTION

It is common to express the solution of electromagnetic diffraction
problems in terms of an integral, which, in general, cannot be
evaluated in closed form. However, it is possible to obtain its
complete asymptotic expansion for large values of a parameter. There
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are several methods to obtain the asymptotic expansion, the most
general being the method followed by Bleistein [1]. For the type of
integral being considered here, the most commonly used technique is
the method of steepest descents [2]. In order to apply this method, it
is necessary to deform the original contour of integration to the
steepest descent path (SDP), taking into account any singularities that
may be crossed during the deformation. The integral along the
steepest descent path can then be expressed as follows:

IM= LDP 2(z)eV® dz )

where g(z) and f(z) are analytic functions of the complex variable z
along the integration path SDP. The parameter (] is real and positive
and the end points of SDP are at infinity. It is assumed that the
integrand in (1) has an isolated, first-order saddle point at 2z, i.e.,
f(@)=0and /" (z) # 0atz = z,. Furthermore, even though the
function g(z) is analytic along the SDP, it has M simple poles
{z.} ¥, acar the saddle point z;.

Since f(z) has an isolated first-order saddle point at z;, the
following transformation is appropriate

J@y=f(z)-s5% )

Substituting (2) into (1) yields

1() = ez r Gis)e % ds )
where
dz dz -2s dz

-2 172 (4)
G(s)=g(z) pra ; Zi.—s:f——’(z) Y dslee | 7@ .

There are two procedures found in the literature to evaluate (3) for
large values of Q. The first one, which appears to have been
originally introduced by Van der Waerden (3], is discussed in detail
by Felsen and Marcuvitz [4]. In this method, G(s) is expressed as the
sum of two functions such that

G(s)=C(s)+ P(s) (5)

where C(s) contains all the pole singularities of G(s) and P(s) is
regular in the neighborhood of s = 0. Thus, the original integral in
(3) is reduced to the sum of two integrals; namely, the integral of
C(s) which can be expressed in terms of a Fresnel-type integral, and
the integral of P(s) which can be expanded (asymptotically) in a
series of inverse powers of (1. Felsen and Marcuvitz obtain the
complete uniform asymptotic expansion of an integral similar to (3),
given in [4, eq. (4.4.16)], except that they consider the case where
G(s) has one simple pole near s = 0. It is noted that the solution
presented in [4, eq. (4.4.16)] is valid for the general case where the
pole may cross the steepest descent path anywhere in the complex z-
plane. The generalization of Felsen’s results to the present case is
straightforward as shown in Section II.

The second procedure is the Pauli~-Clemmow method {5] in which
the function G(s) is expressed as the product of two functions,
namely

G(s)=T(s)B(s) ©)

where T(s) is regular near s = 0 and B(s) contains all the
singularities of G(s). Since T(s) is regular in the neighborhood
of s = 0, it is expanded in a Taylor series around s = 0 and after
multiplying the Taylor series by B(s), it is formally integrated term
by term. Thus, each term of the asymptotic series contains a Fresnel
integral plus inverse powers of (1. Recently, Gennarelli and Palumbo
[6] obtained the complete asymptotic expansion of (3) following the
Pauli-Clemmow method. However, unlike previous results obtained

by this method, the authors in [6] isolated the Fresnel integral, which
is present in every term of the Pauli-Clemmow series, in the leading
Q12 order term.

It is shown in Section III that the complete uniform asymptotic
expansions obtained by the two methods described above are identical
(term by term) inside and outside the transition regions corresponding
to each pole of G(s). It was observed by Hutchins and Kouyoumjian
[7] and independently by Boersma and Rahmat-Samii [8] that the two
asymptotic series of I({2) are equivalent for the special case where
G(s) has one pole near s = 0.

Yip and Chiavetta {9] show that the function on the right hand side
of (6) can always be expressed as the sum of two functions, namely

T(s)B(s)= L(s)+ M(s) @)

where i(s) is a runction containing all the singularities of 7(s)B(s)
and M(s) is regular near s = 0. It is then shown in [9] that L(s) =
C(s) and M(s) = P(s) which is to be expected since C(s) + P(s)
and 7(s)B(s) represent the same function G(s). Thus, substituting
(7) into (3), Yip and Chiavetta reduce the original integral in (3) to
the sum of two integrals (as in the first method described above)
where one integral can be expressed in terms of a Fresnel integral and
the second in inverse powers of {. However, this is not what is done
in the Pauli-Clemmow method. As mentioned before, the function
T(s)B(s) is expanded in a series where each term contains all the
singularities of G(s) and consequently each term of the asymptotic
series of /({1) will contain a Fresnel integral. In order to compare the
Pauli-Clemmow and Van der Waerden methods, it is necessary to
study the complete asymptotic series of /(). In the process of
integrating T(s)B(s) and C(s) + P(s), orders of integration and
summation are freely interchanged without rigorous justification.
Thus, it is not possible to conclude a priori that the asymptotic series
of I(Q) obtained by the two methods are the same.

Volakis and Herman [10] extended Felsen’s result [4] to the case of
multiple pole singularities and obtained only the leading term of /().
It appears by the comments made in the Introduction of [10] that
Volakis and Herman did not realize that the solution in [6] is
applicable for the general case where the poles of g(z) can cross the
steepest descent path anywhere in the complex z-plane.

II. FIRST METHOD (Van der Waerden)

Since G(s) is an analytic function with M simple poles {s;} ¥ , it
can be written as follows:

M M o
T ri P(")(O)
Gis)=S —— =N
)= S tPe=X P 2 ®
i=1 i=1 n=0
where P(s) is a regular function near s = 0 and r; is the residue of

G(s) at the pole s,, namely
r,=lim G(s)s-s,). “)
soes8;

Because P(s) is a regular function, it can be expanded in a Taylor
series around s = 0 as shown in (8). It is noted that P'™ (0) is the nth
derivative of P(s) evaluated at s = 0.

Substituting (8) into (3), one obtains

M

1@~ eV | NV +2jr/xe-%1Q(F jsi Vi)

i=1
. Pemor (n+%)

‘7 )) @

n=0

yIm(s) =0 (10)
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where I'(n + 1/2) is the Gamma function, j = V—1 and
on={ et dsomron=Vr.  ap

It is noted that wher s; is complex, the condition Q(F/s;V0) for
Im(s;) = 0, implies that Re (js;ivlD) > 0 in (10).

In order to compare (10) to the expression obtained by the Pauli-
Clemmow method, it is convenient to express Q( »') in terms of the
transition function F{x) which is given by [11]

(e 3
F(x)= st/;(e/‘ S e-in dt; ——23<arg x)<x/2 (12)
Vx
where x can be complex. Due to the presence of the square root
function Vx in (12), and in order for F(x) to be a single-valued
function, it is necessary to introduce a branch cut in the x-plane [12],
(13]. Furthermore, to assure the convergence of F(x) as |x| = oo,
the branch cut is chosen as depicted in Fig. 1. It follows from (11) and
(12) that
F(-jy)e”’
QN =~ VEU-Re () (13)
where U is the unit step function. Substituting (13) into (10), keeping
in mind that Re (¥ js,-\/_) > 0 in (10), yields

eV )
o~ V= 3 D1 - F(jas?) + GONT
(»~= { E Jjas

i=1 '
+2,’,4,.1‘(“1/2)} a4

QII
where =t
G(Zn)(o) M r;
n= —‘_(2")' +2 s”'—” . (15)
i=] !

III. SECOND METHOD (Pauli-Clemmow)
Let T{s) be a regular function given by

T (0)

(16)

i=]

where G(s) was defined in (4) and {s;}, are the poles of G(s).
Solving for G(s) in (16) yields

T(s)
r[ (s-s)

G(s)=—5——=T(s) 2 ——=TE)BGs) (7

where

o (8)

IT Gi-s0

ki

It is noted that for M = |, C, = 1. By means of (16), the asymptotic
series of J(f1), given in [6], can be rewritten as follows:

. M
](Q)-..\/;_)eﬂ/(z,) {‘-EI—'(I—F(j(BZ)) T(O),-E| }

+\/‘—ieﬂf‘l) E M

n=2

CT ne M- JT(k)o
FOEC RS RS ETE

int T k=0 k! i=1

1491
Imx
x-PLANE
/anucn Cut oF /x
- Rex
TOP SHEET: - % < ARG (1< 2

Fig. 1. Branch cut definition of the Vx function in (12).

Evaluating (17) at s = 0 and substituting that expression into (19)
yields

M .
IQ, ¢)~ \/g eViz) {E g(l ——F(jﬂs‘f))+G(0)}
i=1 "
+¢W(Zs) o T(n+1/2)
va Q"

n=1

M M- TwYO st
. {Esz:'u E ( )Es:“} ) 20)

in] 7 iw]

It follows from (17) that

2n+ M1 T(")(O) 2 Clsl

k=0 k! i=] Slz"+l
G(z")(O)
(2")' . for M=1
= G(Zn)(o) M-2 T(k+2n+|)(0) M
- ok

@n)t & k+zar 1) 2_31 Csiy  forM >2.

21)
However, it can be shown that

M

Y Csi=0,  fort=0,1, ---, M-2. 22)

i=l

Therefore, (20) can be written in the following manner:

M s
m- \/% eV {2 g a —F(jm,?»+o(0)}

jmy !

eﬂf(zs I‘(n + 1/2) r
2 E sZn+ 1
jm

G(Zn)(o)
=G } 23

The asymptotic expansions of /(Q) given in (14) and (23) are exactly
the same.

As a final check, the asymptotic series in (23) can be simplified
even further when the function G(s) does not have any poles near s
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= 0. Thus, when the poles of G(s) are far from s = 0, the magnitude
JQs?is large and the asymptotic expansion of F(jQs?) is given by

. 1 < TU+1/2) ix ) L
F(jQs})~1+—= —_— - H<~
(Jj9s?) \/'E @y 3 <arg (st‘)<2. (29)

Substituting (24) into (23) yields

eV & GRNO)(n + 1/2)

- @ny1a”

(25)

n=0

which is the correct expression for the case when g(z) does not have
any poles near z;.

IV. CONCLUSION

Two complete uniform asymptotic expansions (for large Q) of the
integral shown in (1), obtained by two different methods, were
compared. It was shown that both expansions are exactly the same
(term by term). It was also observed that the uniform asymptotic
solutions given in [6] (multiple pole singularities) and in {4, eq.
(4.4.16)] (one pole singularity) are applicable for the general case
where the pole(s) of g(z) cross the SDP path anywhere in the z-plane.
Obviously, the generalization of Felsen's result {4] to multiple pole
singularities is still valid for the general case described above.
Furthermore, for the special case when all the poles of g(z) are far
from the saddle point, the transition function F{x) was replaced by its
own asymptotic series for large |x|. As expected, the asymptotic
series in (25) is the same as the one obtained by Felsen [4] when g(2)
is regular near the saddle point.
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Excitation of Creeping Waves on a Circular Cylinder
with a Thick Dielectric Coating
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Absirect— A magnetic lise source on s diclectric coated conducting
cylisder excites o creeping wave field. The costing is not secessarily thin,
50 more than one mode can exist. 1t is found that as the coating thickness
is increased, the surface flold ou the dicloctric-air interfoce exhibits o
distinctive beat patiern resuiting from the interaction betwesn two
creeping-wave modes.
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INTRODUCTION

This work examines the transverse electric (TE) surface ray field
excited by a magnetic line source in the presence of a perfectly
conducting circular cylinder with a dielectric coating. The line source
and the field point are both positioned at the dielectric-air interface.

The surface field is first calculated from a rigorous eigenfunction

series. Next, through the Watson transform, the alternate creeping
wave representation is examined. The dielectric coating does not
have to be thin, and an example is given whereby the creeping wave
field on & thick coating must be represented as two creeping wave
modes.
This work differs from previous papers in that no one has
examined the case where both the source and field points reside on the
cylinder. Kodis [1], Kodis and Wu {2}, and Rao and Hamid {3), have
examined bistatic scattering and have given a geometrical optics
interpretation. Wang {4] has recently obtained numerical results for
the case of plane wave scattering and an interpretation of scattering
resonances in terms of a reflected field plus creeping waves.

Fig. 1 shows the pertinent geometry. The conducting cylinder has a
radius p = @ and the dielectric coating has a radius p = b. The
magnetic line source is £ directed, has a strength of M, V, and is
positioned at (p’, é°) = (b, 0). The field point is at (p, ¢) = (b,
¢). Since the coating is nonmagnetic, u; = uo and the dielectric
constant is €.

A. Eigenfunction Solution

The magnetic field has only a £ component and can be computed
from the eigenfunction series of the inhomogeneous Helmhoitz
equation. The solution must also satisfy the boundary conditions £,
= 0atp = a, E, and H, continuous at p = b, and the radiation
condition as p — . An e~ time dependence is assumed. Using G
10 denote the Green’s functions, the magnetic field is then A =
LiwegMoG, where

—1 & enHY(kob) cos (mo)
G@)omo=3 33 .2_0 HY' (kob) + iCo H ) ko)

1))

C ‘h €0 Jn(ki DIN 5 (k10) = J (k1 @)N (k) D)
-t

ko €1 Jp (k) DIN p (k1 @) = J (ki @)Nm (k1 b)

HY is a Hankel function of the first kind of order m. J,, and N, are
Bessel functions of the first and second kind. The wavenumbers are
k|_o = @ Vutioand € = 2, &, = 1form # 0.

The main difficulty in evaluating this series is that it converges
very slowly, s0 its remainder must be summed in closed form. This is
accomplished by using Debye's asymptotic formulas for cylinder
functions of large order:

How -1 -x[ 1 :)’,,...
HY) Vim/ixyi-1 m i\ m

and for C,

k
Ca~i [k—;g] sinh a, tanh [m (v, - 7,)]

sinh o, =V(m/k,b) =1

0018-926X/87/1200-1487301.00 © 1968 IEEE
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L
Fig. 1. Coordinates for the dielectric coated cylinder.

Yap=tanh (o) — g s.

If m »k,a, and m» kb, it can be shown that y, — y, = In (b/a)
and conscquently

b/a)y"~(b/a) "

tanh [m(yb—va)l=(b_/5)m+_(b/a)—-7~ '
If (b/a)lm’ 1, then

kK /Py St g m 1 [k b\2
i — — Tk )— =i —— N i o]
C 'koe, (m/k;p)? -1 rel kob [l 2( po +

The above approximations for H /H,, and C,, then give

H:’(kob) _—_f kob

H' (kob) +iCu H\(kob) 1+€ m

where ¢ = ¢;/¢. By using the formula [5])

oo

E cos meo

= —In (2 sin (¢/2))

one can compute the infinite snm in (1). For the cases presented, the
first m = 6 kob ierms were summed nusherically.!

B. Residue Series

Through Watson transformation [6], the following equivalent
representation of the Green'’s function is established

G@)= Y, Gaul¢+2nw) @
where
Gu(d)= Y Lpe'»!®! 3
p=1
Looh H ) (kob) @
?" kob @

55 [H (o) +iC, H ko) v =,

3
and v, are the complex roots (7] of
H D' (kob) +iC,, H , (kob)=0 )

in the upper v plane. G(¢) is 2= periodic in ¢ whereas G.(¢) satisfies
the radiation condition in the infinite angular domain -~ @ <¢<®. A
given mode p of the residue series in (3) is interpreted as a creeping
wave propagating along a curved surface as shown in Fig. 2. The
total field in (2) is obtained by summing up, over n, the multiply
encircling rays. For a thick dielectric coating, the attenuation rate

' The authors express their thanks to Professor Jack Richmond of The Ohio
State University for his subroutine used in calculating Bessel functions.

LN i XX

Fig. 2. Ray encirclements associated with the summation index n.

TABLE I
¥, AND Lp FOR kob = 20, € = 4(0 P
a/xq vy 'Ll' #L‘(deg )
0.10 24,10 + 10,117 0,309 83.3
0.20 32.09 + {0. 0.0700 90.0
0.30 34.52 + 10, 0,0218 90.0
0.40 34,93 + 0. 0,0119 90.0
0.50 34,77 + 10. 0.00888 90.0
4% v Il Fiple)
0,10 23,43 + 15.270 0.0601 8.3
0.20 20.81 + 14,182 0.139 -51.9
0.30 20.87 + 11,820 0.226 28.1
0.40 22.87 + 10.271 0.217 78.2
0.50 26.55 + 10,002 0.0951 90.0
0 eigenfunction ———
residue series — — —
d=005 kg
-10 one mode
~~
O
~
(9]
O
o
N

"50]11111 T
0

7 Vv T 1 rv1r v hn
90 120 150 180
$

Fig. 3. Eigenfunction and one mode creeping wave solution, d/Aq = 0.05.

30 60

(prescribed in Im (»)) can be quite small. For such a case, it is
important to add up all the ray encirclements by using the geometric
series
’2’ eir|¢+2ntl=M .
e i2er __ 1
Aw —®

The prime denotes exclusion of n = 0 from the summation.

C. Numerica! Results and Discussion

All cases shown use the parameters kob = 20, ¢, = 4¢o. Table |
contains some representative values of », and L, for the creeping
waves. The roots », have already been discussed in m.

Figs. 3-6 compare the computed Green's function, using (1) and
(2). It was found that when d/A\g 3 0.25, the creeping wave solution
required both the p = 1 and p = 2 modes, whereas for thinner
coatings the p = 1 mode alone was sufficient. A typical case, d/Ao
= 0.30 is shown in Fig. 7 to illustrate the behavior of the individual
modes which form a two-mode solution.

e —
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°
-
4 d=0.20
G p=; mode
- p=2 mode
~_ w3
~— | Y
g 8" . !
[=]
8 eigenfunction @) ‘?-
res:due series - — - o~ ke
d=0.10 A
one mode 4
‘SG T T T o
0 30 60 90 120 150 180 N AR

¢

Fig. 4. Eigenfunction and one mode creeping wave solution, d/A\q = 0.10.

20 log (G)

0 - eigenfunction
res-due senes - - -
d=0.25,
-10 two modes
-20
-30 N
-40
-50 T 11
0

60 90 120 150 180

Fig. 5. Eigenfunction and two mode creeping wave solution, d/Ay = 0.25.

0 eigenfunction
residue senes - - -
d=0.30

-10 two modes
~
(@
N’
-20
o
o
~30
(&)
N

-40

-50

0 30 60

Fig. 6. Eigenfunction and two mode creeping wave solution, d/A\g = 0.30.

CONCLUSION

The surface fields on a circular cylinder with a dielectric coating
are computed from both an eigenfunction series and a residue series.
It is found that as the coating thickness is increased, the surface field
on the dielectric-air interface exhibits a distinctive beat pettern
resulting from the interaction between two creeping-wave modes.

30 60 90 120 150 180
Fig. 7. Individual modes for d/A, = 0.30.
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Comparison Between Two Asymptotic Methods
ROBERTO G. ROJAS

Abstract—Two complete asymptotic expansions of an integral with
many simple pole singularities and a first-order, isolated, saddle point
evaluated by two different methods sre compared. It Is shown that both
expansions are exactly the same (term by term) inside and outside the
tramsition regioms.

1. INTRODUCTION

It is common to express the solution of electromagnetic diffraction
problems in terms of an integral, which, in general, cannot be
evaluated in closed form. However, it is possible to obtain its
complete asymptotic expansion for large values of a parameter. There
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Wiener-Hopf Analysis of the EM Diffraction by an
Impedance Discontinuity in a Planar Surface and
by an Impedance Half-Plane

ROBERTO G. ROJAS

Abstract—The electromagnetic diffraction of a plane wave by a planar
surface with a discontinuity in impedance and by an impedance half-plane
is studied. The plane wave of arbitrary polarization is obliquely incident
to the axis ot the two-dimensional structures. The solutions obtained here
are based on the Wiener~-Hopf technique and they are cast in a matrix
notation which is useful for diffraction problems. The exact formal
soluticns are expressed in terms of integrals which can be asymptotically
evaluated. Uniform asymptotic expressions are obtained where the
presence of the geometrical optics (GO) poles as well as the surface wave
poles near the saddle point are fully taken into account. Several numerical
examples are presented and it is shown that the solutions are continuous
across the shadow boundaries of the GO and surface wave fields.

INTRODUCTION

T IS WELL KNOWN that the scattering properties of a

body are functions of both its geometrical and material
properties. In the last few years, there has been a renewed
interest in understanding the effect of the material properties
of a body on its scattering behavior. In particular, the edge
diffraction by dihedral structures, whose surfaces can be
modeled by the Leontovich (impedance) boundary condition,
has been studied by several authors for both acoustic and
electromagnetic waves [1]-[22].

For this class of problems. where the surfaces of the wedge-
shaped structures satisfy the Leontovich boundary condition,
there are two basic methods of analysis. The first method.
which is the most general of the two, is that of Maliuzhinets
[1]. Bucci and Francheschetti [8] extended Maliuzhinets’
solution to formally solve the scattering problem by a half-
plane with different face impedances. However, they did not
asymptotically evaluate their formal solution. Vacarro [I1],
{12} has generalized the Maliuzhinets method, which he refers§
to as the generalized reflection method, to treat the case of
oblique incidence on a wedge. The uniform asymptotic
evaluation of [11], [12] was obtained by the present author
[17] including the case of surface wave incidence.

The second method that is available to solve problems
involving the diffraction from the junction of semi-infinite
planes is the Wiener-Hopf technique [23], [24] which was
introduced around 1931 to solve certain types of integral

Manuscript received September |1, 1986: revised May 13, 1987. This
work was supparted in part by the Joint Services Electronics Program under
Contract NOOO14-78-C0049 and by The Ohio State University Rescarch
Foundation.

The author is with the ElectroScience Laboratory, Department of Electrical
Enginecring. The Ohio State University. Columbus, OH 43212.

IEEE Log Number 8717999,

equations. Copson (25] was one of the first to apply this
method to solve diffraction problems by formulating the
diffraction of sound waves by a perfectly reflecting half-plane
in terms of an integral equaiion. A more general method based
on the Wiener-Hopf technique also exists. This method,
known as the Wiener-Hopf Hilbert technique, was introduced
by Hurd [26]. However. as with the Wiener-Hopf technique,
in general it cannot be used to treat wedge-shaped objects.
Pathak and Rojas [18] have obtained UTD solutions based on
the Wiener-Hopf technique for the scattering of plane,
cylindrical, and surface wave fields normally incident to the z-
axis (no z-dependence) of the two-part impedance surface
depicted in Fig. 1, except thatin (18], Z, = Oor Z; = oo. The
scattering of a surface wave field by the two-part surface
shown in Fig. 1 has also been solved by Kay [5]; however, as
in [18], all the fields in [5] have no z-dependence. Further-
more, it is assumed in [5] that Z, and Z, are purely imaginary,
i.e., lossless case. Senior has solved a number of half-plane
diffraction problems using the Wiener-Hopf method [2]-[4].
In a recent paper. Volakis {21] modified Senior’s Wiener-
Hopf solution [3] for the EM diffraction by a half-plane with
equal impedances on both sides. The solution in {3] is not
bounded at the incident and reflection shadow boundaries;
whereas, the modified solution in [21] is uniform (bounded)
across these boundaries. However, the solution in [2]1] does
not take into account the presence of the surface wave fields
excited at the edge of the half-plane.

In this paper. the Wiener~Hopf technique is used to solve
two canonical problems. The first problem considered is the
electromagnetic diffraction by a planar surface with an
impedance discontinuity (two-part surface) as shown in Fig. 1.
Note that each half-plane (x = 0, y = 0) is homogeneous and
isotropic, i.e., Z, and Z, are scalar constants. The incident
field is assumed to be a plane wave of arbitrary polarization
obliquely incident to the z-axis as depicted in Fig. 1.

The starting point of the analysis is to define, as was done in
[11], [17], a two element column vector f, whose elements are
the z-components of the electric and magnetic fields. It is then
sufficient to obtain the solution for this column vector since it
plays the role of a vector potential. In other words, all the
other field components can be determined in terms of f.. In
contrast to the case of normal incidence to the z-axis where the
elements of f, are decoupled [18]. the Leontovich boundary
condition couples the elements of J. for the case of oblique
incidence. However. as shown in [16], the noniial components

0018-926X/88/0100-0071801.00 © 1988 IEEE
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Fig | Planar surtace with an impedance discontinuity.

of the fields, i.e., E, and H,, are decoupled. Therefore. the
two element vector f,, whose elements are E, and noH,, is
also introduced. The Wiener-Hopf equation is then obtained
in terms of the column vector f, by following Jones” method
[23}. [27]. As expected, the Wiener-Hopf equation is simpler
when the normal fields E, and H, are used instead of £, and
H..

The solution of the Wiener-Hopf equation requires the
factorization and decomposition of two-by-two diagonal matri-
ces. The factorization procedure employed here is based on
Weinstein's work [28]. There is also a formal procedure to
decompose a function; however, in this paper it is done by
inspection. After applying the radiation and edge conditions,
the Wiener-Hopf equation is finally solved yielding an
expression for the column vector £, in the Fourier-transformed
domain. This expression contains two nonzero arbitrary
constants which must be determined in order to have a unique
solution. Before these unknown constants are determined, the
solution for f. is obtained in the Fourier-transtormed domain
interms of f, by means of a transformation matrix. It turns out
that the cxpression for f. contains poles which give rise to
fields that have no physical interpretation. Thus. the unknown
constants are properly adjusted to remove the unwanted poles
yielding a unique solution for Sf.x, y, 2) in the form of an
integral. The asymptotic evaluation of the integral is then
performed, where the presence of the geometrical optics (GO)
poles. as well as the surface wave poles near the saddle point,
is fully taken into account. This results in a uniform expression
across the shadow boundaries for the GO and surface wave
fields.

The second problem considered in this paper is the EM
diffraction by a half-planc with cqual impedances on both

sides. The solution for the half-plane problem is obtained by
appropriately combining two special cases of the two-part
problem; namely, the solutions corresponding to the cases
where Z, = 0 and Z; = oo, respectively. Finally, several
numerical examples are presented for both problems consid-
ered here with a brief discussion of their applications to
practical problems. [t is noted that all the fields in the
following discussion have the e ' time dependence.

STATEMENT OF 1HE PROBLEM

As stated in the introduction, the first canonical problem to
be considered is the analysis of the diffraction by a two-part
impedance plane depicted in Fig. 1, where Z, and Z, are scalar
constants. The total field (E, A). which will be determined
everywhere in the half-space v > 0, satisfies the impedance
(Leontovich) boundary condition, namely

E-(y Eyy=215xH;, xz0,y=0 (1)
where E and A are the clectric and magnetic fields. respec-
tively. Let us consider a plane wave of arbitrary polarization
which is obliquely incident to the Z-axis of the infinite plane as
shown in Fig. 1. Since the infinite plane is a two-dimensional
geometry, all the fields will have the same z-dependence as the

incident field, namely
E=E(x, yyex{z; H=H(x, y)e*iz Q@)

where k] = — k cos 6’. Therefore, all the field components
can be expressed in terms of E. ana H, (the z-components of
the electric and magnetic fields, respectively), that is

E=Vx(VX(ZE.) +iki(noH )/ K?

,,OHZVX (Vx$(noH.) - ik3E.|/K? (3)
where
) d ad
V=V, +%ik’;V,=% —+J — (4a)
< ox ay
and

K=K +iK,=k sin8" =(k +ik;)sin8’; ki, k>0

0<8’' <r7. (4b)

The constant 5, is the free space intrinsic impedance and & is

the free space wavenumber which is temporarily allowed to

have a small imaginary part for convenience of analysis.
Next, let us define the column vectors f. and £, as follows:

) 3
tk — k! —
fi= E; 7= nol, | _ ax dy f:
ol E, I 9| K?
k! — ik —
S ay ax
(5)
where both £, and f. satisfy Helmholtz's differential equation:

(VI+ K f =0~ [8] v A=y, v2 0. (6)

Since ali the field components of F and f7 can be determined

i




ROJAS: WIENER-HOPF ANALYSIS OF EM DIFFRACTION

from f,, the incident plane wave field can be completely
defined in terms of f, namely

- - L, L. _ E,
Fi=Fy exp (ik;x~ik ) y+ik]z); Fo, = [nonoz] )

whese Ey; and Hy, are arbitrary constants (the magnitudes of
E! and H', respectively, atx = y = z = 0) and

k;=-Kcosg’, k/ =Ksing’'; O<o¢’'<7. (8)
The column vector f, was introduced because it satisfies the
following boundary condition:

d
(7—+i1( sin 171>fy=0; xz0, y=0 (9)
ay 2

where
1 o sinvf O
I= 0 l];smin: 2

L 2 0 sin vy

2
Z) sin 8’
= ? Z . (10)
0 2
7o sin 6’

Since it is assumed that Real (Z;) > 0, the real part of » is

2
restricted to the interval 0 < Real(v) < #/2. It is important to
note that the fields £, and H, are decoupled in (9).

SoLuTioN

Because of the simplicity of (9), the Wiener-Hopf equation
will be obtained in terms of 7, instead of f,. For analysis
purposes, it is convenient to express the solution as

L=ti+f vy 20 (1

where f 4, which will be referred to as the unperturbed
solution, is the field that would exist if the whole plane in Fig.
| were a surface with impedance Z,. Thus, f; will represent
the effect of the impedance discontinuity at x = y = 0. The
unperturbed field /' “ satisfies (6) and

d _
(7—+il( sin 172> fu=0; |x|<e, y=0. (12)
dy y

The incident field f ', is given by

f’y=F’0,exp(i(k;x—k;y+kz'z));
1 [ —kk, kk;
= ol F,,. (13
o Kz[ky’kz’ kk’] o (1)

b 4
It follows from the definition of /¥ that
yz0
(14a)

Ju=71+ R )Foy exp (itk x+ k) y+k,2));

73
where
R(¢7) 0
Kior=|"? ];
2:o") [ 0 RY(6")
sin ¢’ —sin v
R(¢')= ; O<o’'<w. (14b)

sin ¢’ +sin v

By means of (9), (11), and (12), it can be shown that f;
satisfies (6) and the following boundary conditions:

d
<7—+iK sin 172> fi=0; y=0 x<0 (15a)
ay Y

3 -
<75+il{sini,>(f;+f;’)=0; y=0 x>0. (15b)

In order to simplify the notation, the factor e is dropped at
this stage of the analysis; however, it will be reintroduced
once the Wiener-Hopf equation is solved. As in {18], it is
convenient at this point to introduce the half-range functions
Jys- Let

L=l +F (16a)

where

7 _{f, x>0, & _{0 x>0
7lo x<0 T T f, x<0O°
If s is a complex variable, i.e., s = o + ir, where ¢ and 7 are
real variables, one can define one-sided Fourier transforms of
f}: , (provided they satisfy certain conditions [23], [24]) which
will be denoted by F,.(s, y). The functions F,,(s, y) and
F‘y_(s, ¥), which are carefully defined in Appendix I, are
regular in the upper half-s-plane Im(s) > 7_ and lower half-s-
plane Im(s) < 7., respectively. The constants 7. and 7, (7_
< 71,) are also defined in Appendix I. In terms of the one-
sided Fourier transforms F), (s, y) and F,_(s, ), the two-
sided Fourier transform of f, is given by

Fy(s, »=F,. (s, )+ F,_(s, y);

(16b)

yz20 r_<r<7,

)

where F, is regular in the strip defined by 7. < 7 < 7,.
Thus, taking the two-sided Fourier transform of (6), keeping
in mind that the unperturbed field /* “(x, y) satisfies (6), yields

a
(52+32> F;=6; y20, r.<r<7r, (18)

where (18) holds true within the strip definedby 7. < 7 < 7,
and

B=(K1-s)" Im(8)>0. (19)
It is noted that in addition to the boundary conditions, F § must
also satisfy the radiation condition as y - o for the exp
(- iwf) time dependence. Furthermore, the branch cuts of 8

are chosen such that Im(8) > O in the proper (top) sheet.
Therefore, a solution of (18) which satisfies the radiation
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condition is

F‘;_(s, y) = A(s)e"; r.<r<r,, y=20 (20a)

where

A)=F (5, 00+ F3_(s, 0); 7. <7<r., y=0.

(20b)

The column vector A(s). also regular in the strip 7 < 7 <
7., is an unknown function of s that will be determined via the
Wiener-Hopf procedure. Following Jones' method [27], the
first step is to take the Fourier transform of the boundary
conditions given in (15), which yields

Sy -\ £
<Ia~+iK sin ;73) F: (s, »)=0; y=0,
4

r<7.=Im(K)=K, (la)
and
N N _ ~
(Ib——ﬂksmﬁ,)(F:,v(s,y)+F““(s,y))=0;
. ay ’
y=0, r>7_. (21b)

The function F“_can easily be obtained by taking the one-
sided Fourier transform of (14a), i.e.,

U ( )———-—i (7 (—ik’y) (')
F“ (s, y - ([ ex 1. +A [
V. 3, p i g 2

~exp (k| yYVFo,/(s+k!); 7>1 =Kycos¢”. (22)

Incorporating (20b) and (22) into (21) and after some
simplification yields the Wiener-Hopf equation which holds
in the strip 7 < 1 < 7., namely

Gr()Fs (5, 00+ G ()F} (5, 00=G()Gu()D/ (s + k)
T <1<71, (23a)

where

gi,(5) 0
1208) = - \ ; g(8§)=—r——
0 gl_l(s) B+ K sin v

(23b)

O

and
D= ifsin 5T+ X6 0k (T-Ay(¢ W/ K)Fo, /N2,
(23¢)

In (23a), the functions ¥ and £ are both unknown while
(73(3‘), 5.(5) and D are known functions. The first step to solve
the Wicner Hopf equation is the factorization of the diagonal
matrix G, 2(s) into two matrices which are regular in the upper
and Tower halt-spaces defined by Im(s) > - K, and Im(s) <
K, respectively. Since G(s) is a diagonal matrix, its factoriza-
tion reduces to the tactorization of its individual elements, i.e.,

g"(s) and g¢(s). The lengthy details of this procedure will not
be presented here, because they can be found elsewhere in the
literature [16], [23], [24], [28]. Instead. the main results of the
factorization of G(s). which are based on Weinstein's
work [28]. are summarized in Appendix II. Thus, using the
results of Appendix II, the factorization of G(s) is defined by

G(5)=G, (G _(s). (24)
Substituting (24) into (23a) yields

G .. (9G: . )F: (5,004 G, ()G, (5)F; (s, 0)

= X(s)D; r <r<r, {(25a)

where
X(5)=G, (9G,. (5)/(s+k)). (25b)
The next step in this procedure is to decompose X(s) into
Xs)=X,(+X (s (26)

where X . (s) is regular in the upper half-space defined by
Im(s) > 7. and X (s) is regular in the lower half-space Im(s)
< 71,. As was the case for G(s), the matrix f(s) is also
diagonal. Thus, its decomposition reduces to the decomposi-
tion of its elements. For the problem being considered here,
the decomposition of X(s) can be found by inspection.
Therefore, only the final results of the decomposition of X(s)
are given in Appendix II. By means of (26), (25a) reduces to

GG (HF:, (5, -, (9D=X,_(5)

“D-G; /(96 _(IF5 (5,0, 1.<7<7,. (2T)
After a careful examination of (27), one concludes that all the
functions on the left side of (27) are regular in the upper half-s-
plane defined by 7 > 7_. On the other hand, the functions on
the right side of (27) are regular in the lower half-s-plane
defined by 7 < 7, . Since both half-s-planes have a common
overlapping region described by 7. < 7 < 7, it follows by
analytic continuation [23], [24] that both sides are equal to an
entire function M(s) (regular on the entire s-plane). Due to the
edge conditions that the fields must satisfy near the impedance
discontinuity, the asymptotic behavior of both sides of (27) is
algebraic rather than exponential [24]. It then follows from the
extended form of Liouville's theorem {[24] that M(s) is a
polynomial in s. Furthermore, for this particular problem, the
edge conditions require that the tangential components of E.
and H, be bounded across the impedance discontinuity [11].
[16]. It can be shown [16], that due to both the constraints on
E. and H. across the impedance discontinuity, and the
asymptotic behavior of G, , (s), G,.(s)and X, (s) as |s| = o
for T = 74, M(s) is at most a constant, namely

M(s)=M= [m'] . for all s (28)
n,

where mi, and m, are arbitrary unknown constants at this stage
of the analysis. Finally, solving for (s, 0) and F? (s, 0) in
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(27) and substituting the resulting expressions into (20b),
yields

B} V4
A 5)=G\ . (5G:_(5) —1(5‘2
Gi. (k)G (k))ik Fo, M
. [ +— 1, for all s
(s+k;)V2m 2
(29a)
where
Z(»)=2 (sin % —sin 7)). (29b)

As expected, when Z, = Z,, A,(s) is equal to zero. Note that
the expression for A, still contains the unknown constant M.
In order to evaluate M and thus _obtain a unique solution, it is
necessary to first find the expression for F' 3(s, ). Taking the
two-sided Fourier transform of (5) and solving for F 3> one
obtains

Fi(s, »)=C ' (9F(s, =C {9 A,(9)e™; y >0
(30a)
where
- 1 ks -k.B
&)= [—k;B ks ] : (30b)

The expression in (30a), due to the matrix C~!(s), has two
poles at s = +ik whose residues introduce fields which do
not have a physical interpretation [16]. Therefore, the constant
M has to be adjusted in such a way that these two poles are

suppressed. It follows from (30) that
V:A,(Fik!)=0; Ve=[+i, 1] @a31)

where V* is a row vector. Before (31) is solved, it is
convenient to first obtain the expression for f;(x, ¥, 2). This is
accomplished by taking the inverse Fourier transform of F 3 (s,
y) and reintroducing the factor ez, namely

exp (ikz)

Fix, y,2)= e

|" Fis 9

- exp (—isx) ds; y=20 (32)

where the path of integration is shown in Fig. 2 and k, has
been set equal to zero. The next step in the analysis is to
introduce a change of variables via the transformation

s=—-Kcosw; B=Ksinw (33)

where w is a complex variable and K = K, k = kj, i.e., k,
= 0. Replacing x and y by p cos ¢ and p sin ¢, respectively,
(32) can be written in the w-domain as follows:

exp (—ikz cos 8’)

Jito. 6, 2= [ Aw

2wi Ty

- exp (iKp cos (w—¢)) dw;
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where p = V&% + y? and the new integration path T',, in the w-
domain is shown in Fig. 3. The expression for A, is given by

/iz(W)=é_l(W)¢(W) sin w [m‘.‘g]
- sin ¢’ Y(¢" )2 C(x+0")Fy, (35a)

where

1 —cos w
C'(w)—sin 9 [sin w cos 6’

g, (w) gi (w ]
W) = 35b)
7o [ 0 gh.(w) gh (w (

’

sin w cos 8
cos w

and

B=—R-10%) T~ "(wo) N(wy). (35¢)

The expressions for g, . (w) and g,_(w) are given in Appendix
I and they will not be repeated here. The constant matrix B is
evaluated by solving (31) in the w-domain. In other words, B
is adjusted in such a way that the nonphysical poles introduced
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by C- ! are suppressed. The details of the solution of (31) and
the expressions for N(wp) and T(w) are given in Appendix
1.

ASYMPTOTIC ANALYSIS

As shown in the previous section, the formal solution to the
canonical problem of Fig. 1 has been obtained in terms of an
integral. In general, this type of integral cannot be evaluated
in closed form. Fortunately, in diffraction problems one is
interested in the solutions for large Kp which can be obtained
by applying asymptotic integration techniques. Here, the
steepest descents method will be used to obtain the leading
term of f: for large Kp.

The exponential function in (34), i.e., exp (iKp cos (w —
¢)). possesses an isolated, simple saddle point at w = ¢.
Furthermore, the function A, is analytic everywhere, except
that it has the following simple real poles in the vicinity of the
saddle point w = ¢:

w=r—-¢',w=r+¢', w=—-7+¢’'; 0<d’'<m. (36)

In addition to these real poles, A,(w) also has four complex
poles (see Fig. 3) whose residues can be interpreted as surface
waves departing from the impedance jump:

: A
woil = —peh; Wwo =T+ u‘z’-” a7

sl 1
where 0 < Real(y;;) < #/2.

When the contour T, is deformed into the steepest descent
path Cspp, the poles of A, may be crossed. If this is the case,
then the poles are captured and their residue contributions
must be included. Note that w¢* and w¢;", which are the poles
of ¥(w), can be captured only when Im(u, 2) < 0. It follows
from (10) that Im(yl ) = 0and Im(v§ ,) = OwhenIm(Z, ;) =
0. Therefore, for given values of Z, ,, only two of these four
poles can be captured. Furthermore, since 0 < ¢ < wand 0
< ¢’ < w, thepolesw = Fr + ¢’ will not be captured for
the two-part impedance problem. Thus, deforming the contour
[, into Cspp in (34) and adding the unperturbed field f* yields
the following expression for the total field f;:

fe=lA P fa+fa+fe (38)
where f' is the incident field defined in (7), »nd f is the
reflected field given by

fi=C "(r-o WA () U(r -0 - ¢)
+ A6V U(d—7+0)}C(m+ ") Fy,
exp (- iKp cos (¢ +¢')) exp (—ikzcos 8')  (39)

where U is the unit step function. The fields /3% and f*} are the
surface wave fields which exist in the half-planes x > 0, y =
Oand x < 0,y = 0, respectively. They can easily be obtained
by computing the residues of the integrand in (34) at the poles
defined in (37). That is,

Fi= Fru(wg) exp (iKp cos (w, ~ )
z2 52 52

- exp (- ikz cos 9')U; (40a)

where

1
Ui=U(ds1—¢); &1 = — v, +arccos ( )
cos vhy,

1
=U(¢—02); d=7+ v,z—arccos< >
cos vhy,

(40b)

and
wy=wh, y=vt  ifIm(Z)<0, [=1,2 (40c)

or
wy=w, w=ve,  ifIm(Z)>0, [=1,2. (40d)

The constants v, and vj, in (40b) are the real and imaginary
parts of v, respectively. Furthermore, 7, (w;), which is the
2

s
residue of A,(w) at w,,, can be written as follows:

s2 .
!
Fu(wi=C- 1w Bwih [——77——+5]
cos w, +cos ¢’

- sin ¢’ Y(¢ )2 C(n+ 0 Yoy I=1,2 (41)

where P,(w;’,-") is the residue of J(w) sin w at w;,v", namely
0 0
hy— (w") .
Pwi)=14 tan (W"n) g
ro(wh)
0 0
hy= gl (wh)| .
P.wiy=1 tan (wh) S | @2a)
g;+(w:2
and
(an ( s_(ws)
an (w¢)) ————
Pi(we)= Ve wey |
0 0
gtl,+(wez)
tan (w¢,) ————
By(we,)) = g5, (we) . (42b)
0 0

The last term in (38), i.e., /9, which in this paper is referred to
as the diffracted field, is given by

fUp, 6, 2)= A, (w)

Cspp

exp (—ikz cos 0') S
2xi
- exp (iKp cos (w—¢)) dw;
p>0, 0 ¢ < (43)

The asymptotic evaluation of (43) was carried out following a

1
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procedure similar to that proposed by Gennarelli [29]. Without
going over the details, taking into account the presence of the
poles of A,(w) (real and complex) near the saddle point ¢, and
keeping only the leading term of order (Kp)~ '/, the asymp-
totic evaluation of (43) is given by

11/4

7%, ¢, Z)~ exp (iKp — ikz cos §)
V2xKp
s, [1-F(iKps}))
A+ 2 2N
) ( 2 >
where

s;=V2ei*’* sin <W12—4>> ;

- - — wh - -
wi=x—0', w=wh, wy=wh, w,=w¢, we=w,.

(44b)

The residues 7; contributed by the poles listed in (44b) are
given by

Ai=-C Y x-¢'YAi(0")-Ki(¢')C(x+0")Fy, (452)
Pr=Fou(Wh), F3=Fo(Wh), Fy=Fu(Wwe)), and Fs="Fy,( we,).

(45b)
As mentioned before, only two of the four surface wave poles
w; through wg can be captured for given values of Z, and Z,.
The function F(x) is the well-known transition function {30},
that is
F(x)=2iVxe™ S e~ dt; —31<arg (x)<I (45¢)
Vx 2 2
where x can be complex due to the surface wave poles. In
order for ¥(x) to converge, the argument of x is restricted to
the domain —3x/2 < Arg(x) < /2 in the complex x-plane.
In other words, the branch cut in the complex x-plane runs
from the origin to infinity along the positive imaginary axis. It
is noted that when the magnitude of x is large, the transition
function F(x) approaches one. Hence, when the poles of
A (w) are far from the saddle point, the only nonzero term
within the brackets in (44a) is A,(¢).
As mentioned before, when the original path of integration
is deformed into Cspp, the polesof A, (W)atw = x + ¢', w
= -7 + ¢ and w = 3x — ¢’ will not be captured.
However, when the half-plane problem is considered and the
range of ¢’ and ¢ is extended to 2x, these poles can be
captured. Therefore, it is convenient at this point to evaluate
these residues, namely

([~ Fot C 1 x4 6V Ka2m- 0 Ki(67)

- C(x+¢')Foy; residue at w=mw+¢’

) Fo.-C'(x+0")K(0 A 27— 0")
-C(1r+¢’)FoZ; residue at w= —x+ ¢’

&' (x—-¢'WI-Kio) K \2x-0")} Ko(0")
L -C(1r+d>’)Fo,; residue at w=3x—¢'

~n
1}

(46)

17

HALF-PLANE SOLUTION

The solution for a half-plane having the same impedance Z,
on both sides can easily be obtained from the solution of the
two-part problem discussed in the previous sections. This can
be accomplished by first expressing the incident plane wave
field as the superposition of four incident plane wave fields as
depicted in Fig. 4(a). That is, the incident field is decomposed
into symmetrical and asymmetrical components. Equivalent
configurations to those shown in Fig. 4(a) are easily obtained
by taking advantage of the symmetric/asymmetric properties
of the incident field. The equivalent configurations, which are
shown in Fig. 4(b), are simply special cases (Z, — 0, Z, —
o) of the two two-part problem that has already been solved.
Thus, the next step in the analysis of the half-plane problem is
to evaluate A, and A,whenZ, » 0and Z, » @ respectnvely
In order to avoid any confusion, the superscripts ‘‘c’’ and
“m”* will be added to the solutions of the two-part problem
when Z, = 0 and Z, — oo, respectively.

Case 1: Z, =+ 0 = v} = 0; v{ = x/2 — i

Ri(e)= [ "01 ?] (472)

1
c =('! c - c
Ad)=C-1(¢)¥(¢) [cos¢+cos¢,+8]
cP(@ )2 C(x+0")Fy, (4Tb)

g, (¢)sin¢ 0

V()=
0 V2 sin <§> g (9)

(10
2:(w)=2 l 0 —sin ,,;.] . (@)

Since Z, — 0, the residues Fo (W) are equal to zero, i.e.,
F(WEH) = [3]. The function Be which is the limit of 5 as Z,
-0, is deﬁned in Appendix III.

Case2: Z; = o = p4 = x/2 — oo, 5 = 0

A7(e)=-K54") (48a)
Ar(¢)=C-1(¢)¥™(4) [m+5'"]
- Pm(¢")2m()C(x+6")Fy, (48b)

V2 sin (;) g.(¢) 0

Im(o)=
0 sin ¢g?, (6)
2m()=2 [_sg' Vi ?] . (48¢)

As in Case 1, when Z; = o, 74" = [J] and Bm, which is
given in Appendix III, is the limit of B as Z, - oo.

It is noted that the two-part problem with Z, — 0(co)
corresponds to the configuration of Fig. 4(a) where E, and H,

have asymmetric (symmetric) and symmetric (asymmetric)
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Fig. 4. Relation between the two-part problem and the impedance half-plane
problem.

excitations, respectively. This can be checked by examining
{(47) and (48), and by noting that g.(w) satisfies the identity
g.2x — w) = g,(w). Thus, the range of the angles ¢ and
¢, for the two-part solutions can be extended to 2wx. The
solution of the half-plane problem is then obtained by
superposing (see Fig. 4(b)) the two-part solutions with Z, = 0
and Z, — oo, respectively, and keeping in mind that the poles
of Ac"(w)atw =% + ¢', W= -7+ ¢',w=3r~ ¢’
can be captured, namely

JosFi +F 4o +f0m  0< 6 <2r, 0<¢'<2r

49)
where
f"wzf'“(,z exp (—iKp cos (p—¢')—ikz cos 8')
[U(p-¢" +m)-U(d-¢’ —m)] (50)
in the incident field and
fi,=C'(x-¢")NA(6)U(x-¢' ~¢)
+R,@r -0 ) U6~ 37+ NC(x+0" )y,
-exp(—iKpcos(p+¢’)—ikzcos 8') sn
is the reflected field. The diffracted field is given by

_pin/d
S~ — exp (iKp—ikz cos §")
¥ wW2xKp
. . 2 (1 - F(iKps?)|
AB)+A™()+ S
I <W1—¢>
sin ———
2
« P11 - F(iKpa?))
vy (52a)
13 ) <W/—¢>
sin —_—
2
where
o= -C Yx-0")RC(x+0" Vo  ri=-Fo, (52b)

and

[ Ao,
K‘{K.aw—dm.

for0<o¢' <7
forr<¢’ <27’

=r—¢'; wy=m+0¢"." (52)

The function ¢, introduced in (52a) is defined as follows:

a;:xfie"" sin <W12—¢> ;

saen {5, RAEST o
and
= {r_—f;ff’,z; 11:33,,:,’ ff)orr:r)fcb ¢<<7:.-. (52e)
Furthermore, 74 through 72 are given by
f7=l w(W)+3 L (W) (52f)
2 2°

where wy = wh, wy = we, ws = 2x — wh, and wg = 27 —
we,. The residues r"'(w,) and 77 (w)), are given in (41), except
that the functions (B sin ¢\F(¢ ), P 1(w), Z(v)) are replaced

(Be, ¥¢"), Bi(w), 2<(v)) for Case 1, and by (B™,
j’"(«b ), P (w), Z’"(v)) for Case 2. All these new functions
were already defined, except for Ff(w,) and 15"'(w,), which are
the residues of J‘(w) and J:’"(w) respecuvely, atw = w,
namely

0 0
Be(wh )= V2 sin (wh /2)
cos (wh)gh (wh)
0 0
Br(wh )= ta"(Wﬁ'n) (53a)
T_(wh)
tan (w¢,)
P(;(W:I)z (wel) ;
0 0
V2 sin (we,/2)
Br(we)=| cos (we,)gs_(we)) (53b)
0 0
Pcam—wh )= -Bi(wh), Pr@r—wh)=Prwh),

Piar—wi)=Piwe),  Pram-wi)=-Prw)

(53¢c)

The surface wave field for the half-plane, given by f;l‘; can
also be obtained from the two-part problem. Without showing
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Fig. 5. Field scattered by the two-part impedance plane for an obliquely incident plane wave. (a) TM, polarization: £, = 1, 5oy,
= 0. (b) TE, polarization: Eo, = 0, noHy, = 1.

any details,

J 5= —F exp (iKp cos (s — ¢~ ikz cos ") U(os1 - ¢)
+ 73 exp (iKp cos (wy; +¢) —ikz cos 0" YU(d — 27+ ¢y)
(54)

where ¢, was defined in (40b). Note that in (54), F}¥ = 7%, F3*
= Ffand w;; = w’ if In(Z)) < 0. On the other hand, if
Im(Z)) > 0, F{* = 7%, F¥ =F2 and wy = we.

NumericaL REsSuULTS

Most of the expressions presented in the previous sections
are simple functions which are amenable for numerical
calculations. The only expression that requires a simple
numerical integration is /(w, ») defined in (62b). This function
can be efficiently computed with a 12-point Gaussian integra-
tion algorithm. In Fig. 5, the field scattered by the two-part
surface is depicted for three-different values of Z,, while Z, is
kept constant. The incident field is an obliquely incident plane
wave (8’ = 45°) with two different polarizations. In Fig.
5(a), the incident field is TM, polarized (Ey, = 1, Hy, = 0),
while in Fig. 5(b) it is a TE, polarized (Ep, = 0, Hp, = 1)
plane wave. As expected, when Z; = Z,, the diffracted field is
zero and the scattered field is just the reflected field. As Z,
changes, the diffracted field becomes more important and it
begins to interact with the reflected field. As a result of this
interaction, the magnitude of the scattered field is no longer a
constant, but fluctuates as depicted in Fig. 5. In addition to the
diffracted and reflected fields, the surface wave fields also
contribute to the scattered field. It is seen in Fig. 5 that the
surface wave fields are significant around 0° and 180°. It is

also important to mention that an obliquely incident plane
wave which is TM, or TE, polarized, excites a scattered field
that has both polarizations as shown in Fig. 5. However, it
must be noted that the TE, and TM, field components become
decoupled for a normally incident (8’ = 90°) field.

The results in Fig. 6 illustrate the effect of the angle 8’ on
the scattered fields. When 8’ = 30°, both fields E, and noH,
are equally important. However, when 8’ = 80°, the cross-
polarized field becomes less significant. For example, in Fig.
6(a), where the incident field is TM, polarized, the scattered
field noH, becomes very small as 6 changes from 8’ = 30° to
6’ = 80°. On the other hand, in Fig. 6(b). where the incident
field is TE, polarized, the field E, becomes much smaller in
relation to the nofl, field when 6 changes from 30° to 80°. It
is easy to show that if 8’ = 90°, the cross-polarized scattered
field is identically equal to zero.

The other canonical problem that was considered here is the
half-plane with equal impedances on both sides. In Fig. 7, the
total field is shown for a lossless impedance half-plane excited
by an obliquely incident plane wave. In order to show the
effect of the surface waves excited at the edge of the half-
plane, two cases are considered. First, the impedance Z, is
allowed to have a large reactance (Z, = idng). For this value
of Z,, the effect of the surface wave can clearly be seen in Fig.
7 from ¢ = 340° to ¢ = 360° where the total field starts to
increase in magnitude due to the surface wave field. When Z,
= i0.27,, the surface waves become weaker and the total field
decreases monotonically for ¢ > 316°, except around ¢ =
360°, where the presence of the surface wave field is still
observed. The incident plane wave field in Fig. 7, is obliquely
incident (6’ = 45°) to the axis of the half-plane, which excites
a scattered field with both TM, and TE, polarized components.
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noHo, = 0. (b) TE, polarization: Ey, = 0, noHp, = 1.

In Fig. 7(a), the incident field is TM, polarized, while in Fig.
7(b) it is a TE, polarized plane wave.

The last example considered here is depicted in Fig. 8
where the total field was calculated for two values of . In
Fig. 8(a), the incident field is TM, polarized, while in Fig.
8(b), the incident field is TE, polarized. As expected, when 8’
is small (8 = 25°), both fields E, and noH, are significant.

However, as 8’ gets closer to 90° (8’ = 80°), the cross-
polarized component of the scattered field approaches zero.

CONCLUSION

The electromagnetic diffraction of a plane wave by a two-
part surface and by an impedance half-plane was studied in
detail. The incident field was assumed to be a plane wave of
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TM, polarization: Eo, = 1, 5oHy, = 0. (b) TE, polarization: £y, = 0, 90H,, = 1.

arbitrary polarization, obliquely incident to the axis of the two-
dimensional structures. The exact solutions for these canonical
problems were developed in terms of integrals which can not
be evaluated in closed form. Thus, uniform asymptotic
solutions, valid for large (Kp), were obtained by applying the
method of steepest descents. These uniform solutions are valid
for any angles of incidence and observation for both TM, and
TE, polarizations, however, special care must be taken for the
cases of grazing incidence and/or when Z,;, goes to zero or
infinity. For these special cases, where two or more poles may
coalesce to the saddle point, the procedure described by
Gennarelli [29] can be followed to obtain a valid solution.

The uniform asymptotic solutions presented here were
obtained by taking into account the presence of the geometrical
optics poles (real poles) as well as the surface wave poles
(complex poles) in the vicinity of the saddle point. The
diffracted field was derived by keeping only the leading term
of order (Kp)~ '/? with respect to the incident field. Thus, if a
more accurate description of the diffracted field is necessary,
e.g.. the diffracted field propagating on the impedance
surface, it is necessary to include the next term of order
(Kp) 32

As indicated in [18], one possible application of the present
work is the prediction of the EM scattering by a metallic
surface which is partly covered by a thin material coating.
Another application would be a study of the scattering by a
conducting half-plane covered on both sides by a thin coating.
These problems can be treated with the solutions developed
here. Furthermore, the results obtained here play an important
role in the development of a solution for the problem of EM
diffraction by the edge of a thin dielectric/ferrite half-plane
(16}, (31].

The solution for f, was written in a very compact matrix
notation which is especially useful when treating the more

general wedge problem [11], {17]. Furthermore, the elements
of the diffracted fields /¢ and fgp, i.e., E? and noH?, are
proportional to the field components Eg and E,, of the ray-fixed
coordinate system defined in [30]. Thus, in the treatment of
canonical diffraction problems, it is convenient to express the
diffracted fields in terms of f7.

To conclude, it is important to keep in mind that for the case
of oblique incidence, the normal components E}" and H3Y of
the surface wave field are decoupled. That is, for a given value
of surface impedance Z, only one of these field components
E Wor H y') will be excited. However, when E3* and H* are
computed both can be nonzero because the matrix - l(w) is
not diagonal.

APpPENDIX |

In this Appendix, the most important properties of the
Fourier transform that are relevant to the Wiener-Hopf
technique are summarized. A detailed discussion of this topic
can be found in many excellent textbooks, one being Tich-
marsh [32]. Let the function f(x) (see (16a)) be expressed in
terms of the half-range functions f, and f_ which were
introduced in (16b). Note that the subscript ( + ) in the function
J+(x) signifies that this function is identically zero for x < 0,
and the subscript (- ) in the function /_ means that the second
function is identically zero for x > 0. Next, assume that £, (x)
and f_(x) have the following asymptotic behavior:

Jox)~ [:] e-%,  as x—o;

f.(x)~[:] erer,

The Fourier transform of f,(x), provided f,(x) satisfies

as x— —oo, (59)
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certain conditions [23], [24], is defined as

L |7 7. e ax (56)
V2rx Yo

where F, (s) is regular in the upper half-s-plane defined by 7
> 7. [23], (24]. Similarly, the Fourier transform of f_(x) is
defined by

F+(S)=

F",(s)=—l— ° Jo(x)e s dx &%)

where F_(s) is regular in the lower half-s-plane defined by 7
< 7,. Finally, the two-sided Fourier transform f(x) can be
written by combining (56) and (57), namely

1
Var
where F(s) is regular in the strip defined by 7. < 7 < 7,.
The inverse Fourier transform of F(s) is then given by

F(s)= Sw Fix)es dx (58)

Jx)= F(s)e ™ ds; 1_<a<rt,. (59)

1 ® +ig
E S ~+ia
ArppenDIx 11
The factorization of the function g(s) (an even function of s)
defined in (23b), which is regular and free of zeros in the strip

-K; < 17 < K;, means that g(s) can be expressed as the
product of two functions such that

gis)=g.(s)g-(s);
g(s)=g(-s); g.(£s)=g_(¥s5) (60)

where g, (s) and g_(s) are regular and free of zeros in the
upper and lower half-s-planes Im(s) > —K; and Im(s} < K3,
respectively. There is a formal procedure for obtaining g, (s)
and g_(s). All the details of this procedure can be found in
[24], [28]. As stated before, the factorization of g(s) is based
on Weinstein’s work [28]. It is easier to carry out the
factorization in the w-plane by introducing the change of
variables given in (33). Thus, on the w-plane, the functions g,
g.,and g_ can be expressed as follows:

I
g(W)=———— 61)
sin w+sin »

( _exp (I(w, v)/2x)
& w)_[cos v+cos wj'/?’
I(r - 2
g’(w)=exp[ (r—w, v)/27] 62)

[cos v —cos w]'"?

where

w- v

t
—dt. (62b)
wev SIN I

I(w, V):S

It follows from (62) that g, (w) = g _(x — w), g_(w) =
g.(x — w),and g,(2x — w) = g.(w). Another important
step in the Wiener-Hopf procedure is the decomposition of the
function X (s) into the sum of the functions X, (s) and X (s)

as Indicated in (26). There is also a formal procedure to
decompose the function X(s); however, in this case it can be
done by inspection. Without showing the details, X, (s) and
X _(s) can be expressed as follows:

27
X‘(s)_mk(";ld. (-kNG ' (—kH)-G,, (9 ) (s)
(63a)
22" '()
X (©=——16, G,/ (-G, (-k)G, (—k))

(s+k,)
(63b)

where X, (s) and X _(s) are regular in the upper and lower
half-s-planes defined by Im(s) > K; cos ¢’ and Im(s) < K,
respectively.

Arpenpix 11T
In the w-domain, (31) can be written as follows:

Ve A,(wi)=0=V*J(ws) [W+E]

- §(¢')2(») sin ¢’ Fyy =0 (64)

where V' * is a row vector defined in (31) and

W*—w;tiﬂ' Bo=In (M) (65)
02 » fe sin 8’ )
Let
V"’\I(W*)
T(wo)=cos ¢’ I-cos w L; N(w):[-_ 0 ]
’ ° =L ws)
(66a)
where
1 0
L'=[ 0 —n]' (66b)

By means of (66), (64) can be rewritten using a more compact
notation, namely

[T 1 (wo) N (wo) + N(wo) B1¥(¢') 2(v) sin ¢* Fy, =0.
(67)

The expression outside the brackets in (67) is not identically
zero, which implies that the expression inside the brackets
must be zero. Solving for B, one obtains

= =N (wo) - ' (wo) N(wo). (68)

In the half-plane problem, the expressions for B¢ and B™ are
needed. They are given by

Be= — (Re(wo)) ' T 1 (wo) N (wo);
Br= —(Rm(we) ' T- ' (wp) Nm(wy)  (69a)
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where

Note that \z" and J’" were defined in (47¢) and (48c).

vegemwg) ] _

Nc'm(WO): [ V ¢(-'m(wov )

rospectively.

i

(2]

(3]
4]

15}

161

17

(8]

19

(10}

12

113}

113

[15¢

Fi6]

17
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The Bandwidth Performance of a Two-Element
Adaptive Array with Tapped Delay-Line
Processing

R. T. COMPTON, JR., FELLOW, IEEE

Abstract—-The bandwidth performance of a two-element adaptive
array with a tapped delay-line behind cacir clement is examined. It is
shown how the number of taps and the delay between taps affect the
bandwidth performance of the array. It is shown that an array with two
weights and one delay behind each element yields optimal performance
(equal to that obtained with continuous wave (CW) interference) for any
value of intertap delay between zero and To/B, where Ty is a quarter
wavelength delay and B is the fractional signal bandwidth. Delays less
than T, yield optimal performance but result in large array weights.
Delays larger than Ty/B yield suboptimal signal-to-interference-plus-
noise ratio (SINR) when each element has only two weights. For delays
between To/B and 4T,/ B, the performance is suboptimal with only two
taps but approaches the optimal if more taps are added to each element.
Delays larger than 475/ B result in suboptimal performance regardless of
the number of taps used.

I. INTRODUCTION

T IS WELL KNOWN that the ability of an adaptive array to

null interference deteriorates rapidly as the interference
bandwidth increases [1]-{4]. However, using tapped delay-
lines behind the clements improves the bandwidth perform-
ance. The purpose of this paper is to examine how the
improvement depends on the number of taps and the amount of
delay between taps for a simple two-element array.

The use of tapped delay lines in an adaptive array was first
suggested by Widrow ef al. [1] and has since been studied by
several others. In one study, Rodgers and Compton [2]
compared the pertormance of a two-element array with two-,
three- and five-tap delay-lines using real weights to that of an
array with a single complex weight behind each element. In
another work, Mayhan, Simmons, and Cummings {3] pre-
sented a mathematical analysis of how the number of elements
and the number of delay-line taps affect the interference
cancellation ratio as a function of bandwidth. Finally, White
{4] has studied the trade-off between the number of interfering
signals and the required number of auxiliary elements and
delay-line taps in an Applebaum array.

In spite of these contributions, there still appears to be no
simple explanation in the literature for how the number of taps
and the amount of delay between taps should be chosen in an
adaptive array to achieve a given bandwidth performance. The

Manuscnpt received October |5, 1986, revised May 15, 1987, This work
wdas supported npart by Naval Air Systems Command under Contract
NOOOTY 85 € 0119 and 1n part by the Joint Services Electronics Program
under Contract NOOGI4 78-C 0049

The author s wiath the ElectroSaence Laboratory, The Ohio State
University, Columbus, OH 43212

THEEYE Tog Number B71R0O4

purposc of this paper is to address this question. In Section 1],
we formulate the equations needed to calculate the output
signal-to-interference-plus-noise ratio (SINR) from an array
with M elements and K delay-line taps behind each element.
Then, in Section IlI, we use these cquations to determine the
bandwidth performance of a two-element array. We show how
the performance depends on the number of taps behind each
element and the amount of delay between taps. Section IV
contains our conclusions.

II. ForMULATION

Consider an adaptive array with M elements, as shown in
Fig. 1. Let the elements be isotropic and a half-wavelength
apart at the signal frequency wg. Assume each element is
followed by a tapped delay-line with K taps and a delay of T,
seconds between taps. The output of the first tap behind each
element is the element signal itself, with no delay. Let X,.(f)
denote the analytic signal from element m at tap k. Thus, X),(1)
is the signal received on element [, X-.(1) is the signal on
element 2, Xj2f) = X,(t — Tp), X, (8) = X (t = [k — 1]Ty),
and so forth.

We assume the tap signals are combined by an adaptive
processor. This processor multiplies each %,,,(f) by a complex
weight w,, and then sums the signals to produce the array
output $(r), as shown in Fig. 1. The adaptive processor could
consist of a set of analog least mean square (LMS) or
Applebaum loops [1], [5], or it could be a digital controller
based on the sample matrix inverse method [6] or some other
algorithm. All such processors attempt to adjust the array
weights to their optimal values, which are known variously as
the Wiener weights, the LMS weights, the Applebaum
weights, or thec maximum SINR weights. In this paper, we
shail not be concerned with the specific form of the adaptive
processor, but shall simply assume that this processor adjusts
the weights to their optimal values for any given set of incident
signals.

For a given set of tap signals X, (f), the optimal weights
may be found as follows. Let X, and W, be column vectors
containing the signals and weights at the K taps behind element
m,i.c.,

Xm:lfml(’)v imz(f). T, x-mk(’)lr- (1)
and

Wm = [ Wiits Wi, "7 Wma I . (2)

0018-926X/88/0100-0005301.00 <) 1988 IEEE
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dy(t) is a normalized replica of the desired signal to be
received by the array, (do(ty is defined below in (14).) For
narrow-band signals, the weight vector W satisfying (5) yiclds
maximum SINR at the array output 5], {7].

The X,.(f) may be determined from the signals incident on
the array. For this study, we shall assume the array receives a
desired signal and an interference signal, and that each
element signal also contains an independent thermal noise
voltage, as would be contributed by a front-end preamplificr
or mixer. Thus, the signal at tap k behind element m has the
form

intk(t)zdmk(’)+i-mk(l)+ﬁmk(t)o (8)

where (1), imi(t), and #,,(f) are the desired. interference,
and noise components, respectively. The element signal
vectors X, and the total signal vector X may then be split in a
similar way,

Xm:de+X:m+Xnmy 9)

st

X=X+ X,+X,. (10)

Fig. 1. An M-clement adaptive array with tapped delay lines.

doi1), Tu(t), and A (f) may be determined as follows.
(Superscript T* denotes transpose.) We shall call X, the  Firgt, suppose the desired signal arrives from angle 8. (8 is
element signal vector and W, the element weight vector. defined in Fig. 1.) Let d(1) be the desired signal waveform as
Then let X and W be the toral signal and weight vectors for received on element 1. The desired signal at an arbitrary tap is
the entire array then

[ X T dm()=d(t-lk=1]To~[m-1ITy), (11

where Ty is the delay between taps and T is the desired signal
spatial propagation delay between elements,

X3
X =1 == 3)

L
- - Td=; sin (6;), (12)
L Xm ] . . . .
with L the element separation (see Fig. 1) and c the velocity of
p propagation. We assume d(f) is a zero-mean, stationary,
an - W, random process with average power p,,
W pa=E[ld(]?]. (13
2
wo=1{ - -1 (4) The signal dy(#) in (7) is identical to d(f) except normalized to

have unit power,

I
L Wwm Jo(f)=\/7 d(n. (14)
d

where we use a partitioned vector notation. The optimal
weight vector in the array is then given by [1]. (5] Next, assume the interference arrives from angle 6, and has
W=d 'S (5) waveform i(f) at element 1. The interference signal at an

’ arbitrary tap is then

where & is the signal covariance matrix,

P=E[X*XT], (6)

im(0) =11 = [k=1]To~[m~—1]T)), (15)

where T, is the interference propagation delay between
and S is the stcering vector (or reference correlation vector), elements,

S=E(X*d, (). M

L
) . T,=— sin (6,). (16)
In thesc equations, the asterisk denotes complex conjugate and c
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We assume (f) is also a zero-mean, stationary, random
process, statistically independent of d(f), with power p,,

p.=E[{(0)}?]. (17)

Finally. assume each element signal contains a zero-mean
thermal noise voltage A, (1) of power o2, statistically indepen-
dent between elements. Thus,

E{r*(DAn(D]=0%,,, 1sj,msM, (18)

where 4, is the Kronecker delta. The noise signal at an
arbitrary tap is just a delayed version of the noise on that
clement,

Api () = A (£ = [k = 1]Tp). (19)

The A,,(t) are assumed independent of d(t) and (7).

With these definitions, we may determine ® and S in (6) and
(7). Because the desired, interference and thermal noise terms
are mutually independent and zero-mean, & splits into desired,
interference, and thermal noise terms,

¢=3,+P,+¢,. 20)
Consider &, first. In partitioned form, ¢, is
. . . 3
[ ‘t’dll . d’d” : e : ¢dlM
(bd:x d)d::
by = __ o - —_ {. @n
L Pay, Pamm

where each K x K submatrix &, is the desired signal
covariance matrix associated with a pair of element signal
vectors Xy, and Xy,
= * y7T
b4, =E[X}, X1 (22)

m

®,,,, may be found by substituting d,(¢) of (11) into (22). The
Jkthterm of &,  (the element in the jth row and kth column
of &, ) is found to be

(Pan Lk = RGUG = k) To+(m—n) Ty], (23)

where Rj(r) is the autocorrelation function of the desired
signal d(1),

Ri(r)=Eld*(t)d(1+7)]. (24)

To have a specific case to use for calculations below, we shall
assume d(t) has a flat, bandlimited power spectral density
Sg(w) equal to 27p,/Aw,y over a bandwidth Aw, centered at
frzquency wy, as shown in Fig. 2(a). R;(7) is then the inverse
Fourier transform of Sy(w). or

A
R (1) = p, sinc <—%{I> e/’ (25)

s?(w)
2mp, r‘.A‘"d—-‘
Awd
¥ o e
(a)
ST {w)
2o, 8w
Awi
+ -w
i w,
th)
S?‘.(w)
2wot rA w"—.f
Dw,
| w -

«©)
Fig. 2. Power spectral densities. (a) Desired signal. (b) Interference. (¢)
Thermal noise.

Pa is the desired signal power received per array element, as
defined in (13), and sinc(x) denotes sin(x)/x.

For a specific arrival angle 6, and tap delay T, the matrix
¢, in (21) can be determined by substituting (25) into (23).
Before doing that, it is helpful to write the autocorrelation
function in (23) in normalized form. From (25), we have

A
Ry(j-Kk)To+(m—n)T;}=pqa sinc {%{ [G-KT

+(m—n)T,/]} /ool -bTg+(m-mTal  (26)

Note first that the product Aw,T,; may be written

Awd
AwyTy= . (woTy) = Byda, 2n
0

where B, is the desired signal relative bandwidth,

Aw,
By=—2, 28)

wo
and @, is the interelement phase shift at the carrier frequency
Wy,

w()L .
ba=woTy= P sin (84). (29)

In addition. it is helpful to write T,, the time delay between
taps, in normalized form. Because carlier papers have often
assumed a quarter wavelength delay between taps [2]. we shall
arbitrarily normalize T, to the time dclay associated with a
quarter wavelength delay. The time delay required to produce
a 90° phase shift at frequency wy is
T
Too=— (30)

2(4)0 '
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Therefore we write T, in the form

xr
T0=I'T90=2—w—; (31)
0

where r is the number of quarter-wave delays in T, at
frequency wy. Then we also have

xr =
AOJd T0=Awd —_—=— I‘Bd. (32)
2(4)0 2

In terms of the normalized parameters By, ¢, and r, the jkth
clement of &, is

. By n |
[®4,,, )4 = Pa sinc {? [E (J—k)"+(m“")¢d:|}

- eI/ Aj=kir+(m-moql  (33)

The interference matrix ®; in (20) may be found in the same
way. ®; is

((bfn | q’hz ‘ 1 in
R
d>iz| l d)izz | l
.d>d= -— ] == -=1] ==, (34)
S b
SR N -
\q)i.wl ‘ | | Pivne J

where each K X K submatrix &, is the covariance matrix for
the element signal vectors X and X;,,

d),-m=E[X;"‘"X,:]. (35)

The jkth element of ¢, is
(Bin bt = RAG - K) To+ (m~n) T}, (36)
where Ri(7) is the autocorrelation function of the interference,
Ri(7) = E[i*(1)i(t+1)). 37N

We shall assume the interference also has a flat, bandlimited
power spectral density S(w) equal to 27p/Aw, over bandwidth
Aw;, as shown in Fig. 2(b). p; is the interference power
received per element. R(7) is then

. AO);’T .
Ri{r)=p; sinc <—2—> e/vor, (38)
Substituting 7 and 7, in (35) and normalizing as in (32) gives

. B | |
[®,,,}«=p: sinc {E [5(]“")’*‘(’"‘”)4’4]}

- @SR~ k)r+ (m-nme;) (39)

where B, is the relative bandwidth of the interference,

Aw;
B=—, (40)
wo

and ¢; is the interelement phase shift for the interference at
carrier frequency wy,

L
¢,»=w0T,=w°T sin (6,). 41)

The noise matrix %, in (20) is slightly different because the
noise is independent between elements, so the noise cross
products are zero except for those associated with the same
element. We have

(@, | 0 | I 0 )
-— ] == == ==
0 | &, | l
d, =| -~ —-—— | == 1 == 1 @2
Do b
-~ =] -=1] ==
. 0 ! I I ¢l>ll.uw J

We assume the noise power spectral density S;(w) is equal to
270% Aw, over a bandwidth Aw,, as shown in Fig. 2(c). The
Jkth element of &, is then

B, ) )
(B, )ik = 02 sinc [T(j—k)nr] e/ M-k (43)

where B, is the relative noise bandwidth,

Aw,

wo

(44)

B,=

We have now obtained all terms in the matri< & of (6).
Next, consider the reference correlation vector S in (7).

Because the interference and noise vectors X; and X, are

independent of d(t), the only term that contributes to S is X4,

S=E[X*dy()]=E[X*do(1)]. 45)
Substituting for X and using (14) gives

Ty 82k, 7,
oy suklTs (46)

S={S11» $12, ***, Siky S21s S22, *

SMmir Sm2,

B
Smi = pg sinc {7" [g k=1)r+(m- 1)¢,,]}

. e/IM/ Ak~ Nr+(m-Nogl (CY))

From ¢ and S, the optimal array weight vector may be
computed from (5).

In solving (5), it is helpful to make one more normalization.
Every element of the matrix &, contains the constant py, every
element of ®; contains p,, and every element of $,, contains o2,
If we divide the entire set of equations by o2, the solution for
W will then depend on the normalized parameters

=desired signal-to-noise ratio (SNR) per element,

(48)

Pa
4= 52
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and
P . . .

£, = — = interference-to-noise ratio (INR) per element. (49)
g

From the optimal weight vector W, we may compute the
output SINR at the array output. For a given W, the array
output signal 5(¢) is

S(n=W'X, (50)

where X is the signal vector in (3). By writing X as in (10), we
may split §(¢) imto its desired, interference, and noise
components,

S(D) =84(1)+ $i(1) + 5,(1), (5D
where
S.(t)=WTXy, (52)
S5(y=w7x,, (53)
and
S, ()=WTX,. (54)

The output desired signal power is then

1
Py== E[|540)(?)

N

E[W'X*XTW)

N -

1
=5 Wie,w, (55)

where the dagger denotes the conjugate transpose. Similarly,
the output interference and thermal noise powers are

1
P,'-—-E Wf(b,W, (56)
and
Lo
P, =3 wie, W, (57
Finally, the output SINR is

Py

SINR = .
P +P,

(58)

In the next section, we apply these equations to a two-element
array.

III. THE PERFORMANCE OF A TWO-ELEMENT ARRAY

Now let us consider the bandwidth performance of a simple
two-element array with tapped delay-lines and see how this
performance depends on the delay line parameters.

First, for later comparison, we show in Fig. 3 the SINR of a
two-element array with a single complex weight (and no delay)

20

L 8:0,0.0

0
SINR
(dB)

-40
-90 0 50

8, (DEGREES)

Fig. 3. SINRversus6: M =2, K = 1,8, = 0°, £, = 0dB. £, = 40 dB.

behind each element. In this figure, the desired signal arrives
from broadside (§; = 0°) and the interference from an
arbitrary angle 8;. The SINR is plotted as a function of 6,. The
desired, interference and noise signals are all assumed to have
the same bandwidth B, and Fig. 3 shows the SINR for B = 0,
0.01,0.02, 0.05 and 0.2. £,. the SNR per element, is 0 dB and
&,, the INR per element, is 40 dB for all curves.

Fig. 3 shows that when B = 0.02 the output SINR has
dropped about 3 dB below its value with CW (zero bandwidth)
signals. Larger bandwidths quickly reduce the SINR more.
For B = (.2, the largest value we show, there is as much as 22
dB degradation for some 8,.' For such large bandwidths, the
array performance is clearly unsuitable.

Now suppose we add a single quarter wavelength delay and
one extra tap behind each element. (In the equations above, we
let K = 2 and r = 1.) Fig. 4 shows the output SINR that
results for this case with B = 0.2 and with all other
parameters the same as in Fig. 3. We see that the array now
performs essentially as well as the simple array in Fig. 3 with
CW signals. Thus, adding a single extra tap to each element,
with a quarter wavelength between taps, has fully overcome
the bandwidth degradation.

Figs. 3 and 4 were computed for 8, = 0°. However, the
results are similar for other values of 6,. In general, when the
array has a single weight behind each element, the SINR for B
= 0.2 is much poorer than for B = 0. But if a single quarter
wave delay and one extra tap are added to each element, the
performance is fully restored.

Now consider what happens if we change the amount of
delay between taps. The curve in Fig. 4 was computed for a
one-quarter wavelength delay between taps (r = 1), an
arbitrary amount. When other values of r are used, one finds
an interesting result: the array output SINR is hardly affected
by r! On the one hand, if r is reduced below 1, even 10
arbitrarily small value, the SINR is not noticeably different
from that for r = 1. A plot of SINR versus @, for r = 10 ~4, for
example, looks identical to Fig. 4. On the other hand, if r is
raised above 1, there is also very little change in SINR, until
the dclay exceeds about two wavelengths. For example, Fig. 5
shows the SINR versus 8, for r = 5, 10, 15, 20 and 25 and for
all parameters the same as in Fig. 4. Note that when r = 5 the
SINR still achieves the optimal value shown in Fig. 4. When r
= 10 the SINR has dropped about 1 dB below optimal. (r =

' In general, the amount of degradation for a given bandwidth is strongly
influenced by the INR. The larger the INR, the more sensitive the array is to
interference bandwidth. In this discussion, we shall simply present results for
an INR of 40 dB.




10 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 36, NO. I, JANUARY 1988

20

SINR
(dB)

~-40 | - 1 | L
~90 0 30

6, (DEGREES)

Fig. 4. SINRversus6: M =2,r=1,K=2,8B=02,0,=0"¢,=0
dB, & = 40 dB.

20
| <5 0 s

SINR
(48}

9& ( DEGREES)

SINR versus: M =2, K =2,8=02,0,=0°§ = 0dB.
= 40 dB.

Fig. S.

10 corresponds to 2.5 wavelengths of delay between taps.) For
r = 15 and above, the degradation is more serious, particu-
larly for 8; near +90°.

Thus, the array performance is rather insensitive to r. Any
value of  in the range 0 < r < 5 yields essentially the same
SINR. At first glance, this results seems puzzling, especially
the fact that the SINR is unaffected when r approaches zero.
Intuitively, it appears that a tapped delay-line should become
equivalent to a single weight when the delay is very small.
However, this is not the case, as we shall see below.

To understand the effect of r on the array performance, we
consider the transfer function of the array as seen by the
interference. Let H(w) be the transfer function of the delay
line behind element m in Fig. 1. In general, with K taps and X
— 1| delays behind element m, Hyu(w) is

Hop(@0) = Wt + Wpe 70T04 <+ + wpge /oK =DTo, (59)
The transfer function of the entire array as seen by the

interference H{w) is then

Hi(w)= i H, (w)eotm-NT;,

m=1

(60)

where T, is given in (16). To null an interference signal
completely, H,(w) must be zero over the interference band-
width. For the special case of a two-element array, as
considered in Figs. 3 and 4, H;(w) will be zero if

(61

The physical meaning of (61) is easy to see. An interference
signal from angle @; arrives at element 2 a time 7; later than at
clement . When the interference has nonzero bandwidth, this
delay reduces the correlation between the signals on the two

Hi(w)= — Hz(w)e‘f“’ri.

elements and makes it difficult to null the interference by
subtracting one element signal from another. However, if the
filters H\(w) and Hy(w) satisfy (61), the factor e /*7i in (61)
will delay the interference an additional time T in element | to
restore its correlation with the interference on element 2. The
minus sign in (61) will then make the interference cancel at the
array output.

Before considering what happens as r is varied, let us see
how well (61) is satisfied by the arrays considered in Figs. 3-
5. Note that to satisfy (61), the transfer functions A (w) and
Hy(w) must have identical amplitudes,

|H|(w)|=|Hz(w)|, (62)

and phases whose difference varies linearly with frequency,

cHW=cHyw)-1-wT;, (63)
over the signal bandwidth. For the array in Fig. 3, we assumed
one weight and no delays behind each element. For this case
H,(w) is simply

Hp(0) =W, (64)
which is a constant independent of frequency. With such an
H,(w), it is possible to satisfy (61) at one frequency, but not
over a band of frequencies. For the array in Fig. 4, however,
we assumed two weights and one delay behind each element.
In this case each H,(w) has the form

H (@)= Wy + Wpae /7o, (65)

Because of the term e~/7o, the H,(w) can now vary with
frequency. This capability allows H(w) and Hy(w) to do a
better job of satisfying (61) over the signal bandwidth and
hence improves the array bandwidth performance, as Fig. 4
shows.

Examination of the H\(w) and H,(w) that actually result
when each element has two weights and one delay confirm that
the processor does attempt to satisfy (61). For example, Fig. 6
shows |H{(w)/ Hy(w)| and 2 H\(w) ~ < H)w) versus w for
the same parameters as in Fig. 4: 0, = 0°, ¢, = 0dB, ¢; = 40
dB,r = land B = 0.2, and for §; = 20°. It may be seen how
|H(w)/Hyw)] = 0 dB and < H\(w) — <« H,(w) varies
linearly with frequency over the signal bandwidth. The slope
of 2 H(w) — < H,(w) has the proper value to satisfy (61).

Now consider how the delay between taps affects the
performance. First, suppose we let r approach zero. For very
small r (small Ty), H,,(w) in (65) becomes

H,,,(w): Wy + Wy COS wTy~jWwasin wTy

= Wy + Wop — Wi T (66)

We observe that no matter how small T; is (as long as T, #
0), the array can always realize any given linear slope for
< H\(w) — 2 Hy(w) by making the weights suficiently large.
Calculations show that that is what happens. As r is reduced
toward zero, the weights obtained from (5) increase without
bound. Fig. 7 illustrates this behavior. It shows Re (wy,) and
Im (w,,) as functions of r for 8, = 0°, 6, = 20°, £, = 0dB, §,
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Fig. 6. The transfer functions H(w)and Hy(w):r = 1,K =2,B=0.2,6,
=0°6, = 20°, {4 = GdB, & = 40 dB. (a) |H\(w)|/|H:(w)] versus w (b)
¢ H\(w) — 2z Hy(w) versus w.
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r = NO OF \/4 DELAYS BETWEEN TAPS

Fig. 7. wy versusr:8, = 0°,8, = 20°, ¢, = 0dB, {, = 40dB, B = 0.2.

= 40 dB and B = 0.2, the same parameters as above. The
other weights behave similarly as r = 0.

Thus, by increasing the weights, the array can satisfy (61)
regardless of how small r becomes (as long as r # 0). This is
the reason an array with two weights and one delay behind
each element does not become equivalent to an array with a

single weight behind each element as r — 0. With two weights
and one delay, the SINR obtained versus 6, does not change
significantly from that in Fig. 4 as r — 0.

The unbounded increase in the weights as r — 0 is
understandable if we also note that the covariance matrix in (6)
becomes singular when r goes to zero. As r — 0, the signal
Xma(f) at the second tap becomes equal to X,,(¢), the signal at
the first tap. In the limit, when two tap signals are equal, the
covariance matrix in (6) will have two identical columns (or
rows) and hence will be singular. Thus we should expect the
weight vector W satisfying (5) to exhibit unusual behavior as r
- 0.

In a hardware array, there is always a limit to how large the
weights can actually become, of course. With analog weights,
the circuits always saturate at some point. With digital
weights, finite register lengths limit the maximum attainable
weight values. Because the weights cannot increase indefi-
nitely in a real array, there will be some minimum value of r
for which the array can maintain the SINR. Below this
minimum 7, the SINR will drop.2

Now consider what happens if we increase r. We showed in
Fig. 5 that when r is increased, the array performance is
unaffected at first. But finally, for large values of r, the
performance begins to drop. The explanation for this behavior
may again be found by considering the H,(w).

For any value of r, nulling the interference requires the
transfer functions f\(w) and Hy(w) in a two-element array to
satisfy (61) over the interference bandwidth. However, note
that H,(w) in (59) is a periodic function of frequency. (It is a
finite Fourier series). The period of H,,(w) is

_27(’ 40)0 (67

B To B r ) )
For small r, this period is much larger than the signal
bandwidth. But when r is increased, the period drops. Q will
equal the signal bandwidth when

=-—. (68)

When r is small and the period is much larger than the
bandwidth, 2 H\(w) — <« H)w) can easily approximate a
linear function of frequency over the signal bandwidth (as seen
in Fig. 6 for example). But if r is large enough, the period ¢}
becomes comparable to the signal bandwidth. Because the
H,,(w) are periodic, it then becomes difficult for the H,,(w) to
satisfy (61) over the whole bandwidth. In particular, when r >
4/B, £ H|(w) — « Hy(w) cannot vary linearly over the entire
bandwidth, because its value must repeat periodically within
the bandwidth. This is the reason array performance drops
when r becomes too large.

Fig. 5, computed for B = 0.2, illustrates this point. For B
= 0.2, the period Q, will equal the signal bandwidth when r =
20. One finds that there is no drop in SINR for r up to about
five (which is 1/B). Beyond five, the SINR drops as r

 There will also be convergence difficulties for most weight control
algorithms as r — 0, because the eigenvalue spread of $ becomes infinite.
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approaches and then passes 20. We find the same general
result for all values of B (upto B = 0.5): when the array has
two weights and one delay behind each element, the SINR
is unaffected by r as long as r is in the range 0 < r < 1/B.

The performance degradation for large r may also be
understood from a time domain point of view. Signals with
nonzero bandwidth remain correlated with themselves for time
shifts up to approximately the reciprocal of the bandwidth.
Hence, one would expect that adding an extra delay and tap to
each element will be effective only if the delays are short
compared with the reciprocal of the bandwidth. If the delays
are too large, the signals on different taps become decorrela-
ted, and the array cannot null the interference by subtracting
one tap signal from another.

The curves in Figs. 4 and 5 assumed two weights and one
delay behind each element. Let us now consider what happens
if we add extra taps (extra delays and weights) behind each
element in the two-element array.

We observe first that adding extra taps can help the
performance only for a limited range of r. On the other hand,
when r < 1/B, the array is already capabie of nulling a
wideband interference signal. Hence for r < 1/B there
appears to be no point in adding extra taps. On the other hand,
if r > 4/B, the period { of the H,(w) is less than the signal
bandwidth. In this case the H,,(w) cannot satisfy (61) over the
signal bandwidth, regardless of how many taps are used,
because < H\(w) — < H)(w) must repeat periodically within
the signal bandwidth. Hence the only case where extra taps
may be useful is when 1/B < r < 4/B. In this range, the
period of H,(w), although larger than the bandwidth, is small
enough that with only two weights and one delay 2 H\(w) —
¢ H:(w) does not vary linearly with frequency. However,
adding more Fourier terms in (59) will allow < H(w) -
2 Hy(w) to approximate a linear behavior more accurately.

Let us illustrate this behavior for B = 0.2. First, for r <
(1/B) = 5, no extra taps are needed. An array with one delay
and two weights already has optimal performance, as may be
seen in Fig. 4. Next, for 5 < r < 20, we find that with only
two weights and one delay, the SINR is reduced from that in
Fig. 4. Fig. 5 shows this behavior. However, for this range of
r, the performance will improve if we increase the number of
taps. Fig. 8 shows the SINR versus 8, for r = 15 and for K =
2.4, 8 and 16 taps. As may be seen, for this r the perfomance
isir roved by increasing K. The reason for this improvement
is su 11in Fig. 9, which shows <« H(w) — £ Hy(w) versus w
for the same values of K and for 6, = 80°. 2 H\(w) —
¢ Hy(w) becomes more nearly linear with w over the signal
bandwidth as K increases. (| (w)/Hy(w)| is unity over the
bandwidth for all four values of K.)

Finally, when r >(4/B) = 20, we expect poor nu'ling
performance no matter how many extra taps are added,
hecause « H(y) — <« Hy(w) is periodic with a period smaller
than the bandwidth. Fig. 10 shows such a case. It shows the
SINR versus @, forr = 22, (with B = 0.2,6, = 0°, ¢, =0
dB, ¢, = 40dB)and for K = 2,4, 8 and 16. As may be seen,
the SINR improves somewhat with K but never achieves the
value in Fig. 4. Fig. 11 shows {H(w)/Hy(w)| and < A\(w) -
< H,y(w) for this case with 8, = 80°. Note how |H\(w)/ Hy(w))

20
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Fig. 8. SINRversusf:r=15,B=02,8,=0°,¢(,=0dB. ¢ = 40dB.
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Fig. 9. 2H|(w) — <Hyw) versusw:r = 15, B = 0.2, 6, = 0°, 8 =
80°. £, = 0dB, ¢, = 40 dB.
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Fig. 10. SINR versus8:r = 22,8 =0.2,6, = 0°, {, = 0dB, §, = 40
dB.

and 2 H\(w) — < H(w) repeat periodically within the signal
bandwidth. Also, |H(w)/H)(w)] # 1 at some frequencies
within the bandwidth, and 2 H\(w) — <« H,(w) is not linear
across the bandwidth, regardless of how many Fourier series
terms are used in the H,,(w).

Whether an adaptive array should be operated with 7 in the
range /B < r < 4/B and with a large value of K depends on
how the array is to be implemented. For an array with analog
control loops, there is no reason to use such a large r. For one
thing, it is difficult to implement long time delays between
taps. For another, each weight in an adaptive processor adds
cost and complexity to the processor. To obtain good
bandwidth performance from the array, it is simpler just to use
a small value of r, such as r = 1, and to use only two weights
and one delay per element.

For an array with digital weight control, on the other hand,
an A/D converter will be used behind each element. In this
case it may be useful to have a large value of r, since a large r
corresponds to a low sampling rate. However, if 7 is large
enough, more weights will be needed, as discussed above.

b
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Fig. 11. The transfer functions H,(w) and Hy(w): r = 22, B = 0.2, 6, =

0°,6, = 80°, £, = 0 .:8, &, = 40 dB. (a) |H,(w)|/|H:(w)| versus w. (b)
¢ Hi(w) - 2 Hi(w) versus w.

Increasing the number of weights may be easier than in an
analog array, but will still add to the complexity of the weight
control algorithm.>

Another factor that must be considered when r is large is the
effect of the array on the desired signal. In general, an M-
element array presents a transfer function

Hy@)= '3, Hp@e ey 69)

m=1

to the desired signal, where T, is given in (12) and H,(w) in
(59). If H,(w) has anything other than a constant amplitude
and a linear phase slope over the desired signal bandwidth, the
desired signal waveform will be distorted in passing through
the array. Whether this is a problem or not depends on the
desired signal waveform and the application. However, for
many communication systems, it is difficult to accommodate a
desired signal whose waveform changes as the array adapts.

Because the array responds to the incoming signals, Hy(w)
depends in general on all the signal parameters: the desired
signal power and arrival angle and the interference power and
arrival angle. However, for the two-element array considered
above, calculations show that when r is small (r < 1/B),
|HAw)| is constant and < H,(w) varies linearly with fre-
quency. But when r > 1/B, Hy(w) can vary substantially over
the desired signal bandwidth. For r in the range 1/B < r < 4/

' For the discrete LMS algorithm (1], the computational burden increases
linearly with the number of weights. For the sample matrix inverse method
10§, 1t increases with the cube ot the number of weights.
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Fig. 12. The transfer function Hy(w): r = 15, B = 0.2, 6, = 0°, 9, = 80°,
¢ = 0dB, § = 40 dB. (a) |H.(w)| versus w. (b) 2 H(w) versus w.

B, one finds that |H{w)| becomes more nearly constant and
< Hy(w) becomes more nearly linear with frequency as the
number of weights K is increased. Fig. 12 shows a typical
case. It shows |H w)| and < H,(w) over the signal bandwidth
forr = 15and K = 2, 4, 8 and 16, with all other parameters
the same as in Figs. 8 and 9. Note how the behavior of H (w)
improves as k increases. On the other hand, for r > 4/B,
Hy(w) cannot have the required behavior over the signal
bandwidth, because the Fourier series period is less than the
signal bandwidth. In this case, there is always at least some
desired signal distortion, no matter how large K. It is clear that
a designer must take the behavior of H4(w) into account when
a large value of r is used.

IV. ConNcLusion

This paper has considered the bandwidth performance of a
two-element adaptive array with tapped delay-lines behind the
elements. Section II presented the equations needed to
compute the output SINR for an array with an arbitrary
number of elements and taps. Section III described how the
number of taps and the amount of delay between taps affect the
SINR for a two-element array.

An array with two weights and one delay behind each
element yields optimal performance (equal to that obtained
with CW interference) for any value of delay greater than zero
and less than 7w/B, where Ty is the time delay for a 90°
carrier phase shift and B is the fractional signal bandwidth.
Delays less than Ty, yield optimal performance but result in
large array weights. Delays larger than T4/ B yield suboptimal
SINR when each element has only two weights.
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For delays between To/B and 4Ty/B, the performance is
suboptimal with only two weights but approaches optimal if
more delay-line sections and weights are added to each
element. Delays larger than 47To/B result in suboptimal
performance regardless of the number of delays and weights
used.
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A Selective Modal Scheme for the Analysis of EM
Coupling Into or Radiation froin Large
Open-Ended Waveguides

AYHAN ALTINTAS, PRABHAKAR H. PATHAK, reLLow, 1EEE, AND MING-CHENG LIANG

Abstract—The problem of electromagnetic (EM) coupling into or
radiation from open-ended waveguides is addressed here. Of particular
interest is the high-frequency range where a large number of propagating
waveguide modes can be excited and conventional procedures requiring a
summation over a large number of propagating modes can become
cumbersome and inefficient. A selective modal scheme is proposed based
on the observation that the modes which contribute most significantly to
the fields coupled into the waveguide are those whose modal ray
directions are most nearly parallel to the incident wave direction. This
concept is illustrated by calculating the EM radiation and backscattering
from open-ended parallel-plate, rectangular, circular, and sectoral wave-
guide geometries. The calculations employ the usual geometrical optics,
aperture field, and Ufimtsev edge current techniques. Also included are
some measured results which further verify the accuracy of the above
computations.

I. INTRODUCTION

SELECTIVE modal scheme is proposed in this paper to

efficiently analyze the problem of high-frequency (HF)
electromagnetic (EM) coupling/penetration into or radiation
from open-ended waveguides. This scheme is based on the
phenomenon that at sufficiently high frequencies, the modes
which contribute most significantly to the fields coupled into
the waveguide are those whose modal ray directions are most
nearly parallel to the incident wave direction [1]. Even though
the transmission of EM energy at HF into semi-infinite open-
ended waveguides has been discussed extensively in the
literature [2]-[6]. the above mentioned fact does not appear to
have been exploited previously. This observation applies
equally well to the reciprocal problem of EM radiation from
the open end where only those modes whose modal ray angles
are most nearly parallel to the desired radiation direction
contribute strongly to the radiated field. This fact is especially
useful at high frequencies where a direct modal analysis
becomes cumbersome and incfficient due to the existence of a
large number of propagating modes inside the waveguide
cavity region.
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The present approach is based on the ray optical characteri-
zation of the waveguide modes in terms of a set of equivalent
modal rays, either directly or through asymptotic approxima-
tions to the modal field expressions. Some examples of modal
rays are illustrated in Fig. 1. Each set of modal rays exhibits a
linear or almost linear phasc distribution in the waveguide
aperture. Using a Kirchhoff-type approximation in the aper-
ture integration (Al), the far field radiated into the exterior by
such aperture distributions consists of patterns which have
beam maxima in directions perpendicular to the wavefronts of
the corresponding set of modal rays in the aperture. Therefore,
for a given observation direction, only those sets of modal rays
in the aperture which radiate beam maxima closest to this
direction contribute significantly; other modes (modal rays)
radiate sidelobes in that direction and generally yield a
relatively small contribution. It is known that the edge effects
included in the Kirchhoff-based AI are not as complete as
those predicted by the geometrical theory of diffraction (GTD)
[7} especially for wide-angle radiation; thus the Kirchhoff
approximation is improved via a modification of Ufimtsev’s
physical theory of diffraction (PTD) [8] presented in [9] to get
the generally small correction to the edge effects predicted by
the Kirchhoff-based Al [10). The additional correction result-
ing from the multiple-edge diffraction of modal rays across the
aperture is assumed to be negligible for large waveguides, and
it is thus ignored.

Section II discusses the Kirchhott-based Al and the Ufimt-
sev-type contributions to the modal radiation from semi-
infinite, perfectly conducting parallel-plate, rectangular, cir-
cular, and sectoral waveguide geometries as shown in Fig. 1.
In all of these geometries the modes will be classified as
transverse electric (TE) or transverse magnetic (TM) to the z-
direction. The explicit expressions for the modal radiation are
presented in the Appendix. The EM fields coupled into these
open-ended waveguides illuminated by a plane wave can be
found directly from the solutions to the above radiation
problems via reciprocity. It is noted that the Kirchhoff-based
aperture integral (Al), which essentially constitutes a physical
optics (PO) approximation, gives results which satisfy reci-
procity only in the main beam direction. However, when the
Ufimtsev correction to the PO approximction is included, it
then tends to restore reciprocity in directions away from the
main beam as well. The resuits of Section II are then employed
in Section Il to analyze the more general problem of EM
plane-wave backscattering from open-ended waveguide cavi-
ties. In particular, the two cases treated in Section I11 are those

0018-926X/88/0100-0084%01.00 © 1988 IEEE
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Fig. 1. Radiation from (a) the parallel plate waveguide: (b) the rectangular waveguide: (¢) the circular waveguide: (d) the sectoral
waveguide.

pertaining to the EM backscatter by open-ended circular. and
nonuniform (piecewise linearly tapered) waveguide cavities
with an interior planar short-circuit termination. Again, it is
observed that only a few selected ones out of a large number of
propagating modes contribute strongly to the backscattered
field for each backscatter direction. and a good comparison is
obtained between the calculated results and corresponding
measurements on actual models. Finally, some conclusions
are given in Section IV.

An ¢/ time convention is assumed and suppressed for the
field expressions. k refers to the free-space wavenumber, and

Z,=7Y, ! is the intrinsic impedance of free space.

I1. Mopat. Rapiation FroMm Somr WAVEGUIDE GEOMETRIES

In this section, the far-zone modal radiation from open-
ended parallel-plate, rectangular, circular, and sectoral wave-
guides 1s discussed. As indicated earlier, these radiation
problems are directly related to the problems of the coupling
of an incident plane-wave field into thc waveguide modal
fields via reciprocity |10] as mentioned in Section 1. Thus the
coupling problem will not be explicitly discussed here.

A. The Parallel-Plate Waveguide

The geometry of an open-ended parallel-plate waveguide is
depicted in Fig. 1(a). The expressions for the modal fields and
the modal radiation are given in the Appendix.

Each component of the nth modal field can be decomposed
into the fields associated with two characteristic plane waves
(which propagate along modal rays). The modal rays associ-
ated with the propagation of these modal plane waves make a
fixed angle ¥, with the waveguide walls. Specifically. ¢, is

given by [10}
B4
n = CO8 f — l
Y =Cos (k) ()

as illustrated in Fig. 1(a) where 3, is the propagation constant
tor the nth mode as given in (9). For the radiation, the incident

and reflection shadow boundary (ISB and RSB) directions
correspond to this modal ray direction. The field pattern of
each mode is composed of two sin (£)/¢ functions with their
peaks in the modal ray shadow boundary (SB) directions (see
Fig. 2). It is also noted that if one considers the radiation only
from the nth odd (or even) mode, the peak radiation occurs at
sin 8 = nw/ka. In this shadow boundary direction the other
odd (or even) modes have a null in their pattern. Therefore,
around this direction only the nth mode and the two
neighboring even modes are mainly responsible for the
radiation. The contributions from other modes interfere
mostly destructively especially in the case of a large wave-
guide where there are many propagating modes. In compari-
son with the exact Wiener-Hopf result [11], it is known that
the Kirchhoff-based Al approximation result is reasonably
accurate for frequencies exceeding the cutoff frequency by 5
percent. It is also known that the Kirchhoff-based Al approxi-
mation gives exact radiation in the modal ray angle directions
(1.

The modal radiation patterns obtained from (13) of the
Appendix are compared with the first-order GTD results for
nonstaggered and staggered waveguide geometries. In order to
show the effect of Ufimtsev correction, the mode chosen is
very close to the cutoff frequency for some small waveguides.
The radiation patterns from these waveguides are shown in
Figs. 3 and 4. The results indicate that the Ufimtsev
contribution improves the Al approximation primarily away
from the direction of the Al beam maximum so that it becomes
indistinguishable from the GTD result which is known to be
accurate.

As mentioned earlier in the Introduction, the Ufimtsev
contribution to the radiated field is generally quite weak in
comparison with the Al contribution for large waveguides. as
observed in Fig. S.

B. The Rectangular Waveguide

From the expressions in (20) and (21) of the Appendix, ciach
component of the anth modal field in a rectangular wave-
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guide can be decomposed into fields which are associated with
four characteristic plane waves that propagate along modal ray
paths as shown in Fig. 1(b).

From the results given in (22)-(26) of the Appendix, it is
seen that the radiation pattern has a sin £/¢ type behavior in
both the § and ¢ directions. There are four different sin £/¢
forms, each of which is due to the integration of a plane-wave
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Fig. 4. Comparison of far zone modal radiation patterns for a TM, mode
from an open-ended, parallel-plate waveguide. Mode index: m = 3, modal
ray angle = 50°, staggering angle: t, = 60°, -----: GTD; ———: AL
xxxx: modified PTD.
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ray angle = 10°, - : GTD; ———: AL xxxx: modified PTD.

component of the mode. Therefore, each sin £/¢ exhibits a
peak at the corresponding plane-wave direction. Also, as the
waveguide becomes electrically larger, the main peaks get
sharper. As a result, only a few modes contribute strongly to
the radiation for a given direction of observation at high
frequencies.

C. The Circular Waveguide

The far-zone radiation due to the nmth modal fields in the
circular waveguide geometry of Fig. 1(c) is given by
expressions in (50)-(61) of the Appendix.
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The modal ray representation can be obtained by applying
the large argument approximation to the Bessel functions and
cach mode consists of two conical modal rays which converge
onto and diverge from the axis of the waveguide [10]. The
modal ray angle corresponding to the nmth mode is repre-
sented by 4,,, in Fig. 1(c). The expression for §,,, is given in
(37) of the Appendix.

A typical modal radiation pattern is shown in Fig. 6 based
on the expressions given in (51) and (52) of the Appendix. The
modal ray shadow boundary direction is also indicated in the
figure and it is secn that modal radiation has a beam maximum
in the modal ray direction.

D. The Sectoral Waveguide

The geometry of the sectoral waveguide is shown in Fig.
1(d). The nmth TE modal field expressions can be generated
from the z-component of the magnetic field of that nmth mode
which is given by [12]

1 . nt {  a°
H.o=—— k*sin [ — <z+—)
jkZ, ! a 2

0] 2
© o8 [m_w (¢+—”>] H oK) (2)
[o10 2

where

VELEY
ki= kl-—(—} 3)
a
and similarly the nrrth T modal fields can be obtained from

the z-component of the electric field of that nenth mode which
18 likewse given by [12]

I IIW( a ]
E.= k- cos B B )
1k [ a 2

) mrw Qo )
sin [-_- (¢+-)] H2 . (ko) (4)
® 2

where H'='(k.p) denotes a cylindrical Hankel function of the
sevond kind of order v ( = mrigs in this case) and of argument
k.o

Using the Debye asymptotic form for the Hanke! function in

the region kyp > mwn/e,. cach mode can be decomposed into

four ray-optical parts which follow zig-zag paths inside the
sectoral waveguide [10].

The projection of the ray trajectories are depicted in Fig. 7,
and they are tangent to the circular cylindrical modal ray
caustic and oblique to the parallel walls of the waveguide. The
radius of the circular modal ray caustic is given by

o (5)

kpy ‘

Typical results of the numerical integration of the Kirch-
hoft-based aperture fields on the planar aperture of Fig. 1(d)
are shown in Figs. 8 and 9. Fig. 8 is the modal radiation of the
TE,; mode in the x-2 plane. The modal ray shadow boundary
directions o the TE», mode in the x-z plane are also sketched
in Fig. 8. As indicated in the figure. the pesk of the radiation
pattern coincides with the modal ray direction. Fig. 9 shows
the modal radiation of the TM,s mode in the x-) plane. The
TMys modal ray shadow boundary directions in the x-y plane
are also shown in Fig. 9. It is noted that due to the existence of
nonparallel walls. the shadow boundaries of the modal rays are
not parallel. Therefore. in this case. the dominant modal
radiation beam is not too sharp and it smears out over the
region corresponding to the angular separation between the
incident shadow boundary (ISB} direction of one edge and the
reflection shadow boundary (RSB) of the other (opposite)
edge. Hence. the efficiency of the selective modal scheme is
slightly reduced in the strongly tapered case as compared to
the rectangular waveguide geometry which exhibits sharper
modal radiation beams. The sharper the modal radiation beam,
the less the number of modes required in the selective modal
scheme.

It is also noted that a Ufimtsev-type correction to the Al can
be obtained in a manner similar to that done for the case of
rectangular waveguide: hence. these details are omitted here
for the sake of brevity.

HI. El FCTROMAGNETIC BACKSCATTERING FROM A CIRCULAR AND
A WeakLY TaperReD WavieGUIDE Cavity MobEL

In this section, the EM backscatter results are presented for
a waveguide cavity model, and for a semi-infinite terminated
circular waveguide. The backscatter returns have two main
contributions. The energy coupled into the open-ended wave-
guide from the exrernally incident plane wave is reflected at an
interior termination to radiate out of the open end: this
constitutes the interior cavity contribution to the scattered
ficld. The other contribution to the scattered field comes
directly from the exterior diffraction of the incident wave by
the rim edge at the open end. The interior radiation contribu-
tion 1o the scattered field i~ caleulated through the analytical
expressions developed in Section [I: whereas., the rim scatter-
ing is calculated via the cquivalent current method used in
conjunction with the GTD [13}. For the short-circuited interior
termination considered here, the interior cavity contribution to
the scattered field is generally more sigmificant: in this case.
the rim scattering may be smportant when the cavity contribu-
tion exhibits a pattern minin. 1.

The backscatter results obtned from a selective modal
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scheme approach are tested against the contribution of all
modes. The numerica! calculations on the cavity model is
compared with the experimental results.

A. EM Backscattering from a Terminated Semi-Infinite
Circular Waveguide

The calculations are presented in Figs. 10 and 11 for the EM
backscattering from an open-ended semi-infinite perfectly
conducting cizcuidi waveguide. The interior of the waveguide
1s terminated ‘vith a planar perfectly conducting short circuit.

The termination is placed ten free-space wavelengths away
from the open end, as shown in Figs. 10 and 11; therefore, the
effect of evanescent modes can be neglected. The radius of the
waveguide is 3.34 free-space wavelengths which allows 115
modes to propagate. Figs. 10 and 11 illustrate the comparison
of the backscattered field bv including the contributions of all
propagating modes versus those based on including only the
modes ~hose modal ray angles are inside a 10° neighborhood
of the observation direction.

In the graphs of Figs. 10 and 11, the effect of the multiple
wave interactions between the opcn end and .. termination
are included in the calculations via the gener. i1zed scattering
matrix technique (GSMT) [10], (4] with the use of modal
reflection coefficients from the open end given in [10]. and it
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is observed that the effect of all the higher order interactions
between the open end and the terminations is small in
comparison with the first-order interaction. Only for suffi-
ciently smaller waveguides, the modal reflection from the
open end is relatively strong in comparison with the aperture
radiation; in such cases. the multiple interactions are expected
to be stronger and hence they have been included via the
GSMT in our computer code.

It is clear from these plots in Figs. 10 and 11 that by
including only the few significant modes, one can substantially
reduce the amount of calculations without seriously reducing
the accuracy.

B. Electromagnetic Backscattering from o« Weak(y
Tapered Waveguide Cavity Model

The tapered waveguide model is shown in Fig. 12. It is
basically an open-ended cavity composed of two waveguide
sections. The first section is part of a sectoral waveguide with
one end open, whereas the other end of this section is
connected to a second section which is a uniform waveguide
with a planar termination at its far end. The exterior of the
second section is curved at the back end to minimize the
scattering coming from the exterior features of the structure.
The model is made of wood and then coated with a conductive
paint. The dimensions of the cavity are shown in Fig. 13. The
length “*L "’ is long enough for the effects of evanescent modes
to be negligible.

The GTD-based equivalent current analysis for the rim
scattering is compared with a set of measurements on the
model. In order to remove the interior cavity effects, the inner
surface of the back wall of the cavity is covered with absorbing
material. The radar cross section (RCS) patterns inthe ¢ = 0°
and ¢ = 90° planes are shown in Figs. 14 and 15.

The interior cavity contribution to the scattered field is
calculated using the modal coupling and radiation expressions
of Section 11. At 10 GHz, the first or the sectoral waveguide
section containing the open end can accommodate 152
propagating modes. The analytical expression for these modes
can be approximated to yield a propagation constant

, [/ nm\? mm\?2
BHHI:: k. - - - - (6)
a foLo

inside the slightly tapered waveguide. In the uniform rectangu-
lar second section, these modes propagate with a propagation
constant given by the dimensions of that section. The mode
conversion due to the small discontinuity between two
waveguide sections is ignored. From the time-domain vesults
obtained from the swept frequency measurement in the 8-12-
GHz band. the multiple interactions between the open end and
the termingtion are deteimined to be small Coough o be
neglected here. Since the modal reflection Lrom the open end
(which 1y formed by half-planesy s expected to bo omuch
stronger than the modal reflection and couphing due to the join
between the two sections (which forms o o e with wedge
angle very close o 1807 the neghgbiling of these mulbuple
BT AR NN A \\L"d‘\'

it rachions also mphes that modsd conves
A dBbounce encigy loss for the raodit 0 vs assumed 1o
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Fig. 13, Cavity model. (a) Side view. (b) Top view.
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model the finite conductivity of the cavity model used in the
measurements. The measured and calculated RCS patterns at
10 GHz are shown in Figs. 16 and 18 for the scans in ¢ =

and ¢ = 90° planes. The agreement between the measured
and calculated results is poorer in the ¢ = 90° plane where the
sectoral waveguide modes are excited for which the modal
rays bounce from the tapered walls. The approximation to the
propagation constant in the tapered waveguide gets worse
especially for higher order modes. Also, in Figs. 17 and 19,
the numerical calculations are compared by including the
contributions of all modes versus only three selected modes.
The modal ray directions of these three modes are closest to
the backscattering direction. As explained zarlier, selecting
only three modes is a weaker approximation in the ¢ = 90°
plane than ¢ = 0° plane. because of the effect of the taper; the
approximation can, of course, be improved by including just a
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few more modes. Comparable accuracy is obtained at 8 and 12
GHz and for other polarizations.

Since this new selective modal scheme proved to be so
valuable in the principal plane; namely, ¢ = Oand ¢ = 90°
planes, it is next applied to ¢ = 45° planc to ascertain its
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Fig. 18.

efficiency when the incident plane-wave direction is not
aligned with the structural symmetry. The aspect angle scan is
calculated in the ¢ = 45° plane for both the 8 and ¢ polarized
incident fields. The results are shown in Figs. 20 and 21. In
this case, the 18 preselected modes are compared with the 152
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66 TM modes); xxxx: only 18 modes are included (9 TE, 9 TM).

modes as shown in cach figure. Note that more modes are
needed in this general case as indicated by the results shown in
Fig. 22 where the 6-mode result is compared with the one
including 152 modes. Even so it is clear that one can use far
fewer modes than the complete set of all the propagating
modes.
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IV. ConcLusioN

It is shown here that an equivalent ray-optical representation
of waveguide modes in terms of modal rays has an important
implication which may be utilized to efficiently analyze the
far-zone EM scattering by large open-ended waveguide

cavities. The procedure is to select and include in the analysis
only those modes whose modal ray directions are closest to the
incoming plane-wave illumination direction in the coupling
problem. Analogously, in the radiation problem only those
modes whose modal ray directions are closest to the observa-
tion direction are selected. The approach is illustrated on
uniform waveguides such as parallel-plate, rectangular, and
circular geometries as well as 2 nonuniform sectoral wave-
guide. In the case of uniform waveguides, the incident and
reflection shadow boundary directions of modal rays shrink
into a single direction which results in a sharper modal
radiation beam. Generally, nonuniform waveguides require
somewhat more modes to be included in the analysis as
compared to the uniform case because of the existence of
nonvanishing angular separation between the incident and
reflection shadow boundary directions due to the taper. The
procedure is especially useful at high frequencies where the
usual modal analysis which includes all the propagating modes
becomes cumbersome and inefficient, and where the existing
rigorous and exact solutions are difficult to apply. Also, the
procedure can be applied to the waveguide cavities formed by
different waveguide sections. The discontinuities inside the
waveguides may cause intermodal coupling as well as scatter-
ing. The multiple scattering effects can be taken into account
using a GSMT approach. For backscattering problems, the
interior cavity radiation contribution to the scattered field is
still mainly dictated by the modes most strongly coupled into
the waveguide. For bistatic scattering, the modes coupled
most strongly into the waveguide are those whose modal ray
angles are close to the angle of incidence; whereas, the modes
which radiate most strongly from the interior cavity are those
whose modal ray angles are close to the bistatic scattering
aspect. Only in those special situations where the intermodal
coupling at some interior termination or discontinuity is such
that the reflection of the modes whose modal ray angles are
close to the monostatic (bistatic) scattering aspect is very
weak, then the interior cavity contribution to the scattered field
from the other modes which are strongly excited by the
discontinuity could become significant in the monostatic
(bistatic) scattering direction, and hence their effect should be
included.

APPENDIX

The Kirchhoff-based aperture integration approximation
together with the Ufimtsev corrections for the far-zone modal
radiation from the open-ended parallel-plate, rectangular and
circular waveguides are given below. The waveguide geome-
tries are depicted in Fig. 1. The normalized modal fields
propagate in + z-direction in all cases. The Kirchhoff approxi-
mation to the radiated field is denoted by the subscript ‘&
and the Ufimtsev correction is shown by the subscript **u."’

A. The Parallel-Plate Waveguide

The nth modal fields can be generated from the y-
component of the fields of that nth mode which is given by

nx A
E,= — N, sin (— x) e /Pn, for TE modes (7)
a
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n .
H,=N,Y, cos <_1_r x> e Bnt for TM modes (8)
a

nx\2\1.2
e
[/

where

2
= ————— 10
(e0na¥,)'? 19
2, for n=0
‘0"‘{1, for n#0 (b
Bn
Yo < for TE modes
Y,= « (12)
Yo 3_ , for TM modes.
The total far-zone radiated field is given by
E=E,+E, 13)

where the Kichhoff-based Al approximation is given by

_ N,e-i*/4 Y,
Ei= -9y —— (cos 0+——>
* V8xkp Yo

c[A, = (—D"A_]e kle—@sinb) for TE modes
(14)
B =d(jy MaYoe " (1 L o)
=0(J)" ——— — ¢os
* V8xkp [}
- [A, +(—-1)"A_]e Fko-(a/Dsinb) for TM modes
(15)

in which

A= . (16)

The Ufimtsev edge current contribution is given by

Eu= _ﬁ %/f e_j'/ZID:(\I’m T+0)'—(— l)"

- jko
© D*(Yn, ®—0)ejkasin®] , for TE modes
Vp
an
N, Y,
E,=0 = = [Di(4n, x+0)+(-1)"
2 Y
. e‘j"ﬂ
- D¥(Yn, x —0)eskasing) ,  for TM modes
Vo
(18)

where D are the soft and hard Ufimtsev diffraction coeffi-
h

cients and in this case are the same as those obtained by
subtracting the physical optics diffraction coefficients from the
GTD diffraction coefficients for the case of a half-plane
illuminated by a plane wave; namely,
. vl v
ge-sxra SN 3" cos 5 sin —

271k €Os Yy +cos y’ v

cos —

2
where the angle of incidence (Y ’) and diffraction (y) are as
shown in Fig. 23. The ¥ and ¢ in the above expressions of
(17) and (18) are measured from the interior of the waveguide
for both half-planes.

D};(w. y')= (19)

B. The Rectangular Waveguide

The nmth modal fields of the rectangular waveguide can be
obtained from the z-component of the fields of that nmth mode
which is given by

<mr)2 <m1r>2
_ + ——
a b
jB’lm
nw mx )
* COS (— > cos (——y) e /8amt  (20)
a b
for the TE modes and
<mr>2 (m1r>2
— ) +| —
a b
JBam
. m=r .
> sin (T y> e‘lﬂnmz (21)

i < nr
- sin | —
a
The total far-zone radiated field is given by

Hz=Nnm Yom

Ez= —Nnm

for the TM modes.

E=0E,+ ¢E, (22)
where
Ey=Ey+ Ep, (23)
and
E¢=E¢k+E¢u. (24)

The contribution from the Al approximation is given by [15]

jn+mN - jkr
J m€ " UK/ )@ cos b sin 6) sin 0

- dxkab r

Yom
. {u cos ¢ <l + cos 0>
Y,

A +(=D"A_){B, -(-1)"B_]

in ¢ <1 + Yo o)
- p Sin cos
v Yo

: [A+—(—1)"A_][B*+(—l)"'B-]} (25)

EN'
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Fig. 23, Angle of incidence (¢ ') and diffraction (¢ ") for the half-plane
geometry.

and

fn+m - jkr
J N,,,,, g___ e(jk/Z)(a cos ¢b sin ¢) sin

dwkab r

. 0+ ynm)
—u sin ¢ | cos Y,

1A+ (=D"A_][B. -(-D"B_]

Ynm
- cos 0+
v Cos @ ( Y, >

: [A+—(—1)”AA][B++(—1)'"B_}} (26)

Eokz

in which

. ka [ nw
sin | — {sin 8 cos ¢ + —
2 ka
A, = 27)
. nw
sin & cos ¢ + —
ka

kb 7 ) mx
sin | — ksm # sin ¢ + —
2 kb
B, = (28)
in 0 sin ¢+ mm
sin @ sin ¢ + —
kb

N"m=4 [260"60”1 Y"mab {<E>2+<Tl>z}] - (29)
a b
Bnm=\/k2_(”—1r>2_<£n‘—7£>z (30)
a b

Yo Bam ,  for TE modes
Yom= P 3n
Y, . for TM modes
\  Bum
( m=
T , for TE modes
u= (32)
nw
—, for TM modes
\ @
nw
—, for TE modes
a
v= 33)
- ? . for TM modes
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and ¢, is as in (11). Likewise, the contributions to the radiated

field from the equivalent Ufimtsev edge currents arc given by
[15]

1 -~ jkr

E = Nnm
? V8njk kabr

e(jk/Z)(a cos ob sin @) sin 8

j"
g — [e—(jk/l)bsinﬁsin¢
sin By, sin B

_(_ l)me(jk/Z)bsinﬂsind)]

‘ [Df(llfh, Y u(A, +(-1)"A ) cos 6 cos ¢

nm

Yo

Dy(n, ¥, oA, —(=1D"A ) sin qs]

jm

e—(jk/Z)asin()cusqs
sin B, sin 8,

+

- ( _ l)ne(jk/Z)asin0c05¢]

. [—D;‘(x/q,, Vv, Ju(B, +(— 1)7B_) cos 0 sin ¢

Y,
+ Ym Dy(Yu, ¥ )u(B, —(-1)"B.) cos ¢]} 34)
0
and
1 eIk
E¢u=—_‘ N, - e (/k/2){a cos db sin ¢) sin ¢

V8xjk | kabr
_j'l
. - v [e—(jk/Z)bsinﬂsin¢
sin BOh sin B/,
— ( — l)me(jk/Z)bSinﬂsiniﬁl

' [D_‘;(\b,,, Vvou(A, +(—1)"A_ ) sin ¢

n

+ Ym Dy(Yn, ¥, )v(A, =(=1)"A ) cos 6 cos d)]
0

jm
———[e~ (jk/2)asin@cos ¢

sin By, sin B,
_(_ ])ne(jk/Z)asinocos¢]
’ [Dg(‘//u! V’L,,)U(B4 +(_ l)mB . ) COS (i)

Y,

+ }',"" Di(y,, ¥ u(B, —(—~1)"B ) cos 0 sin ¢]}
0

(35)
where u, v, A, B, are defined as before, and Dy is given in
(19), and h

Cm‘b,_ﬂnm/k 36
~ T sin Bos 36)
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cos 8 The far-zone radiated electric field £ can be written as
Cos Yp=—— 37
sin By Jjk
_ —sin n¢ - cos no e ¥
sin Bos = [1 - (nx/ka)?] 2 oy  E= [aE’ ( cos n¢) +ok ( sin o )] — ¢
: —(1 —sin2 2 23172
sin = (1 —sin® § cos® ¢) 39 where E, and E, can be further separated as
wm /K
cos ¥, —8. (40) Ey=Eg + Eq,, 1)
sin B,
and
cos @
Ccos wv— —sin Bu (41) E¢=E¢k+E¢u. (52)
sin Bo, = [1 — (mx/kb)?]"2 42) The contribution from the Kirchhoff-based Al approximation
becomes [16]
sin 8, =[1 —sin? 8 sin? ¢1"2, 43)

C. The Circular Waveguide

The nmth modal fields of the circular waveguide can be
obtained from the z-component of the fields of that mode
which is given by

. Pom\? PomP cos n¢ :
= ! -J8
Hz -INnm < a > J,, ( a ) {sin n¢ e LL AN

for the TE modes (44)

and

. Dnm 2 PnmpP —sin ﬂ¢ ~ iBam?
Eomitn (22) 00 (222) { "o d ] e,

for the TM modes. (45)

In (44) and (45), J.(x) is the Bessel function of order n and
J!(x) is its derivative with respect to the argument x. The
eigenvalues ,, and p’,  are the m™ root of the equations

J.(x)=0 (46)
and

J, (x)=0 @7
respectively. The expressions for the propagation constants
Bam are

- (”'"")2, for TE modes
Bam = a (48)
pnm 2
k- — ), for TM modes.
a
The normalization constants are given by
2
. for TE modes
_ ) 5PN Kk ZoBom(p 2 — 1)
2
, for TM modes
pnmJ,: (Prm)N Tk YoBrmeon
(49)

wit*i €, as in (11).

1+ cos 6 cos O,

Ey=j"kZyN,
ok =J 0{¥amN 2sn o

Ju(P,)Jn(ka sin 8)
(53)

Eyo=j"KZoNymp y oo S
8k =KL NnmD 2(cos 8,y — cos 6)

Ju(p. )J . (ka sin 8)
(54)
for the TE modes, and

sin @

Eox =J"KNumPnm J ! (Pnm)Jn(ka sin 8)

2(cos 8, —cos 6)
(55)
E¢k =0 (56)

for the TM modes. In (53)-(55), 6,m is the modal ray angle
and is given by

5,,,,,=COS'I (Bnm/k) (57)

The contribution from the equivalent Ufimtsev edge cur-
rents can be approximated in the following form [16]:

Egy=j"ZoNuymnjib, 6nm)Jn(p,:m)

. (9 .
. [3,,,,, sin <§> J, (ka sin 8)

6,,,,,) cos 0

—kp’ sin{ —
P nm (2 ka sin 0

Jn(ka sin 0)] (58)
E¢u =j"ZoNnmnf (6, Bnm)Jn(p,:,,,)
. { am
: {kp;m sin <7) J, (ka sin 0)

—n%B,, sin <E> s 6 1) (kasin 0)
n 2/ kasinf | " sin

_ J"(’“’_ST@]} (59)

ka sin 6
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for the TE modes and
EOu =j"Nnmf(0‘ 6nm)-],: (an)

) cos 8
2Bpm sin [ — ) ——— Ja(ka sin 8
I:"B"msm<2>kasin0 (ka sin 6)

6
+ Kkppm sin <§> J; (ka sin 0)] (60)
Eou= _jnNnmnf(ov 6nm)J,:(an)
: {Bnm sin <6,,_2_,,,> J (ka sin 0)

X . 0> cos 8
THXPam SN\ 3 ) ka sin 0

_ Jnlka sin 0)]} 1)

ka sin 8

I:J,: (ka sin 6)

for the TM modes, where

(0 | <6nm
cOos 5) —COs 7)
nm) = 62
6. 8um) €OS B8 —cOs 6 ©2)

for both the TE and TM cases.
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The Relationship Between Tapped Delay-Line and
FFT Processing in Adaptive Arrays

R. T. COMPTON, JR., FELLOW, IEEE

Abstract—The use of fast Fourier transform (FFT) processing behind
the elements in adaptive arrays is often considered as a means of
improving the nulling bandwidth of such arrays. However, it is shown
here that the output signal-to-interference-plus-noise ratio (SINR) ob-
tained from an adaptive array with FFT's behind the elements is identical
to that of an equivalent adaptive array with tapped delay-line processing.
The equivalen: tapped delay-line array has the same number of taps in
each delay-line as the number of time samples in the FFT's, and has a
delay between taps equal to the delay between samples in the FFT's.
Thus, while the bandwidth performance of an adaptive array can be
improved by using time delayed samples of each element signal, no
further improvement results from taking FFT's of these sampled signals.
The same bandwidth performance is obtained by simply weighting and
combining the time domain samples directly.

[. INTRODUCTION

N IMPORTANT PROBLEM with adaptive arrays [1],

(2] is that their performance deteriorates with
interference bandwidth. The wider the bandwidth of an
interference signal. the more difficult it is for an adaptive array
to null it [3])-[7].

Fig. | illustrates this problem. It shows the output signal-to-
interference-plus-noise ratio (SINR) achieved by a two ele-
ment adaptive array when an interference signal arrives from
angle 8, measured from broadside. The figure is calculated for
two isotropic elements a half-wavelength apart, a desired
signal with 0 dB signal-to-noise ratio (SNR) per element
arriving from broadside (8, = 0°), and interference with a 40
dB interfeience-to-noise ratio (INR) per element. The SINR is
shown for several values of relative bandwidth B, the ratio of
the absolute bandwidth to the center frequency. As may be
seen, for B = 0.02 the output SINR has dropped about 3 dB
below its value for B = 0. Larger bandwidths cause
increasingly more degradation.

When the bandwidth performance of an adaptive array is
inadequate. three methods exist for improving its perform-
ance:

1) using more elements in the array.

2) using tapped delay-lines behind the elements, and

3) using fast Fourier transforms (FFT's) behind the ele-
ments.

Manuscript received October 27, 1986: revised May 15, 1987. This work
was supported 1n part by Naval Air Systems Command under Contract
NOOO19-85-C-0119 and in part by the Joint Services Electronics Program
under Contract NUOO14-78-C-(X)49.
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SINR
(dB)
-40
6, ( DEG)
Fig. 1. SINR versus 8. two-clement array. one weight per element, 6, =

0°. SNR = 0 dB. INR = 40 dB.

Let us compare the performance obtained with each of these
approaches.

First, suppose we add more elements to the array. Fig. 2
shows the SINR for arrays with three, five, ten, or twenty
elements, instead of two as in Figs. 1. (Each array is a linear
array with half-wavelength spacing between elements. All
other parameters are the same as in Fig. 1.) For each array, the
SINR is shown for B = 0 and B = 0.2. As may be seen by
comparing Figs. 1 and 2, adding elements does improve the
SINR. However, it is interesting that no matter how many
elements are used, there is always a region for 8, near 8, where
the SINR for B = 0.2 is poorer than for B = 0.

The second way to improve bandwidth performance is to
use a tapped delay-line behind each element. (For Figs. 1 and
2, a single complex weight was assumed behind each
element.) Fig. 3 shows a two-element rray with a two-tap
delay line behind each element. Fig. 4 snows the output SINR
versus §, achieved by this array for B - 0.2 when each delay
is a quarter wavelength. (The other parameters are the same as
in Fig. 1.) Comparing Fig. 4 with Fig. 1 shows that the delay
lines have fully overcome the bandwidth degradation. The
performance for B = 0.2 in Fig. 4 is just as good as that for B
= 0 in Fig. 1.

A third method for improving bandwidth performance is to
use an FFT behind each element of the array, with a separate
weight on each frequency bin. This approach is shown in Fig.
5. At the output of each element, and A/D converter takes
samples of the received signal. When K samples are available
from each element, these samples are transformed with an
FFT. The FFT produces K frequency domain samples of each
element output. Each frequency domain sample is multiplied
by a weight and then added to the corresponding frequency
samples from other elements. Finally, the inverse FFT (IFFT)
is taken of the frequency domain samples to obtain the time-
domain array output samples.

0018-926X/88/0100-0015%01.00 © 1988 IEEE
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The use of FFT's behind the elements has a certain intuitive
appeal as a method of improving array bandwidth perform-
ance. In effect. the FFT divides the signal bandwidth into
smaller subbands. (For this reason, this technique is some-
times called frequency subbanding.) With a separate weight
on each frequency bin, the array can compensate differently in
each frequency subband.

Unfortunately, calculations of array output SINR for FFT
processing often show poorer performance than that obtained
with tapped delay lines. Fig. 6 shows a typical set of results. It
shows the output SINR from the same two-element array as in
Fig. 1. but with a K-point FFT behind each ciement. The
curves are computed for the same bandwidth, B = 0.2, and
for a sampling interval that makes one period of the FFT

Fesis

| JE

Fig. 5. An array with FFT processing.

frequency response equal to the signal bandwidth. The SINR is
shown for K = two, four, eight and sixteen samples in the
FFT's. As may be seen, the performance does improve with
K, buteven for K = 16 it is not as good as the performance for
tapped delay lines with only two taps, as seen in Fig. 3. Thus,
in spite of the intuitive appeal of FFT's_ their performance can
be disappointing.

The present study was done in an effort to understand the
relationship between tapped delay-line and FFT processing in

[ |
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Fig. 6. SINR versus A, two-element array. A-point FFTS. B = 0.2, 6, = SYSTEM '
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adaptive arrays. The study was motivated by the fact that there ~' ARRAY //
seemed to be no apparent reason why FFT performance should s PROCESSOR

be poorer than tapped delay-line performance.

What we shall show is that inserting an FFT between the
delay-line taps and the weights in an adaptive array in fact has
no effect on the output SINR. The performance differences
noted above between the two approaches are simply due to the
use of different time delays between samples or different
numbers of samples in each case. When a tapped delay-line
array and an FFT array use the same time between samples
and the same number of samples, their performance is
identical.

We proceed as follows. In Section I, we show that inserting
any linear. invertible transformation between the delay-line
taps and the weights in an adaptive array has no effect on
either the output signal or the output SINR. We prove this
resuft {or both the least mean square (LMS) array and the
Applebaum array. (For the Applebaum array, the proof holds
only if the steering vector is transformed in the appropriate
way.) Then in Section IIl, we show that using FFT's in an
array simnmiy inscrts a linear invertible transformation between
the delay-line tao:. and the weights. Taken together, these
results vhow that the performance of FFT processing is
identical to that of tapped delay-line processing. Finally, in
Section IV we consider some related questions: the effect of
FFT processing on the array weights and the covariance
matrix eigenvalue spread. We also discuss how tapped delay-
line and FFT parameters are usually chosen, and point out how
these choices result in the performance differences between
the two methods noted above. Section V contains our
conclusions.

II. A SimpLE PROPERTY OF ADAPTIVE ARRAYS

In this section we show that inserting an arbitrary invertible
lincar transformation between the delay line taps and the
weights in an adaptive array has no effect on either the output
signal or the output SINR. We prove this result for LMS
arrays in Section I1-A and tor Applebaum arrays in Section [1-
B. For Applecbaum arrays, the steering vector must be
transtormed in the proper way along with the signals for the
theorem to hold.

A. The LMS Array

Consider an adaptive array with M elements, as shown in
Fig. 7. Assume cach clement 1s followed by a tapped delay-
line with K taps and a delay of T}, seconds between taps. The
output of the first tap behind each element is the element signal

Fig. 7. An M-clement array.

itself, with no delay. Let £,4(¢) denote the (analytic) signal
from element m at tap k. Then %,,,(?) is the signal received on
element =, and

,f,,,k([)-:f,m([“[k—”T()). (l)

We suppose the %, (¢) are used as inputs to an LMS adaptive
array processor [1]. This processor multiplies each %, (f) by a
complex weight w,, and then adds the weighted signals to
produce the array output $,(f), as shown in Fig. 7. The
processor uses LMS feedback loops [1] or an equivalent
technique 8] to set the weights to their optimal values. These
weights maximize SINR at the array output {9].

For a given set of tap signals X, (¢). the optimal weights
may be calculated as follows. Let X,,,(f) and W,, (with | < m
< M) be column vectors containing the signals and weights at
the K taps behind element m.

Xm(t)= (X1 (£)) Xm2(0), - - -, X (0] T) (2)

and

Wm:[wml’ Wpo, ©°

s wml\'] T‘ (3)

(Superscript T denotes transpose.) We refer to X,,(¢) as the
element signal vector and to W,, as the element weight vector.
Then let X(¢) and W be the total signal and weight vectors for
the entire array,

r X () 7

X,(1)
xay=| — | )

and

W =" "1 (5
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where we use a partitioned vector notation. The optimal
weight vector in the array is then given by [1]. [2]

W= 'S, (6)

where &, is the signal covariance matrix,
¢, =E[X*XT], (M

and S, is the reference correlation vector,
S, = E[X*F(1)]. 8)

In these equations, the asterisk denotes complex conjugate and
F(1) is the reference signal [1]. We assume the signals X, () as
well as 7(¢) are all jointly stationary random processes, so &,
and S, do not depend on ¢. With the weight vector W given by
(6), the array output signal is

S(O=XT(OW=XT()®_'S,. 9

Now consider the following alternative situation. Suppose
that. instead of using the signals X,.(f) as inputs to the
processor, we first combine them in some manner to produce a
new set of signals ¥,,(?), where ] = m <= Mand1 < k < K.
Specifically, suppose Y,, is the K-component vector

sz[yml(t)v fmz(f), "'vﬁml\'([)]-rs (10)

and Y is the MK-component vector,

- Yl -
Y,
Y=~ 7| (an
L Ym
Then let us assume that
Y()=TX(1), (12)

where T is an MK X MK matrix of constants. Thus, each
Y (2) is a linear combination of the X, (f). Now let us use the
Y (2) as inputs to the same LMS processor as before. Fig. 8
shows the new arrangement with transformation T between the
X (1) and the ¥, (7). For this case, we denote the mkth array
weight by .. to distinguish it from w,, in Fig. 7.

With the signals ¥, (f) as inputs, the LMS processor will
produce optimal weights given by

Uu=¢'s, (13)

where U is the new weight vector,
Us=luy, wyy, ooy Uz, o0, ukl’ (14)
&, is the covariance matrix associated with the signals Y, (7).
b, =E[YX)YT(1)], (15)
and S, is the reference correlation vector for the signals Y. (¢),

S, =E[Y*()F(1)]. (16)

To To To

L] LI ] [ To To To
‘i'MI iTMK 7“ EI2 l ;IK

TRANSFORMATION T

WEIGHT

CONTROL
SYSTEM
[ UG U -
$(h ARRAY ///
* PROCESSOR

Fig. 8. A tapped delay-line array with transformation 7.

F(t) is the same reference signal as in (8). The array output
signal for this case $.(f) is

50=Y" (U= YT(I)QV 'S,. (17)

Now it is easy to show that if T is invertible $,(£) and $.(¢)
are in fact identical signals. Substituting (12) into (15) and
(16), and using (7) and (8), we find

&, =E[Y*O)YT@)|=E[T*X*()XT()TT|=T*9,T7,
(18)
and
S,=E[YXO)F(O)] = E[T*X*()F(1)]=T*S,. (19
If T is invertible (i.c.. nonsingular). §,(f) in (17) reduces to
S0)=Y"()® 'S,
=X7() fT[ T*d, TT]-'T*S,
=XT(Hd 'S,
=s.(1). (20

Furthermore, the output SINR is the same for the two
arrays. Substituting (18) and (19) into (13) shows that the
weight vectors U and W are related by

U=[T*®,TT] 'T*S,
=(T7) &S,
=[T7)'W. @n

Consider, for example, the output desired signal. Suppose
X,() is the desired signal part of signal vector X(¢) and Y,(9)
is the desired signal part of Y(t). Then

Yty = TX4(0). (22)
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The array output desired signal in Fig. 7 is
S,0=XJ(OW, 2%
whereas the output desired signal in Fig. 8 is
‘S:)‘d(l)/: YIU. (24)
However, using (21) and (22) in (24) gives
SO =[TXADNT[TT] ' W=5,,0). (25)

Thus, the arrays in Figs. 7 and 8 have identical output desired
signals, and hence identical output desired signal powers. A
similar argument shows that the output interference and
thermal noise powers are also identical for the two arrays.
From this it follows that the output SINR is the same in Figs. 7
and 8.

Thus, inserting a linear transformation 7 between the
elements and the processor, as in Fig. 8, has no effect on the
output signal or the output SINR. The only requirement for
this result to hold is that the transformation be invertible.

B. The Applebaum Array

Now suppose the array processor in Fig. 7 uses Applebaum
control loops [2] or an equivalent technique [8] to set the
weights w,,.. Applebaum control loops use a steering vector
instead of a reference signal to point the array beam at the
desired signal. With Applebaum loops, the steady-state weight
vector in the array will be {2]

W=pud 'V (26)

where yu is an arbitrary (nonzero) gain constant and V is the
steering vector. The array output signal will be

S =XTW=pXT()o V. 27)

Now suppose a transformation T is inserted between the
signals X, (1) and the Applebaum processor, as in Fig. 8. Let
the processor now have a new steering vector Q0. The steady-
state weight vector in this case is

U= #‘I’;IQ- (28)
If (18) is substituted for $,, (28) becomes
U=u[TT] '¢'[T*]"'Q, (29)
so the array output signal is
=Y (HuU
=pXT(OTT(TT) '@ '[T*]'Q
=pX (e '[T*] 'Q. (30)

Comparing (30) with (27) shows that §,(¢) and §,(r) will be the
same if

V=[T* 'Q, (31

Q=T*V. (32)

Thus, inserting the transformation 7 bctween the elements and
the processor has no effect on the output signal (or, as with the
LMS array, on the output SINR), if the steering vector is
transformed according to (32).

We have now shown that placing an invertible transforma-
tion 7 between the delay-line taps and the adaptive processor
has no effect on the output signal or the output SINR. This
result holds for the LMS array and also for the Applebaum
array if the steering vector is properly transformed.

It is important to note what this result says about array
bandwidth performance. Since the transformation T has no
effect on the output signal or SINR of an array, it also can
have no effect on the bandwidth performance of an array.
In other words, the theorem applies no matter what signals are
present in the array. Whatever the signal bandwidths, the array
SINR will be the same with or without the transformation T.
Thus, there 1s no invertible transformation T that one can
insert between the delay-line taps and the weights that will
improve the bandwidth performance.

ITI. AN ArRrAY WITH FFT PROCESSING

Now consider an array with FFT processing. Such an array
was shown in Fig. 5. An A/D converter behind each element
samples the signal from that element every T s. The samples
from each element are collected in the input buffer of a K-
point FFT [10]. When K samples have been stored, the FFT is
taken. This process generates K frequency domain samples
from each element. These samples are multiplied by weights
and then added in corresponding frequency bins to the
weighted samples from other elements. The result is a set of K
frequency domain samples of the array output. Finally, the
inverse FFT is taken to obtain K time domain samples of the
array output. This entire process is repeated every K samples.

The process described above is called block processing,
since the input time samples are handled in blocks of K
samples. After each block of K input samples is collected, a
block of K array output time samples is generated by the
inverse FFT. Each FFT cycle involves a block of K entirely
new samples.

The FFT processing can also be done in a sliding window
mode. In this case, the FFTs are recomputed after each new
time sample, using always the most recent K time samples in
each FFT input buffer. As we shall see below, with this
approach it is not necessary to do the inverse FFT to obtain the
time domain array output. The time domain output is simply
the sum of the weighted-frequency domain samples.

Block processing has the advantage over sliding window
processing that the FFT's need be computed only once per
block, instead of once per sample. However, sliding window
processing has the advantage that no inverse FFT is required
to obtain the array output. In this section we shall consider
both forms of processing.

We first define notation for the sampled signals. To make
the notation here consistent with that in Section II, we denote
the signal on the mth clement of the array by X, (#). Let us
concentrate on a particular set of K contiguous samples in each
FFT input buffer in Fig. S. Suppose that, of these K samples,
the most recent was taken at t = f,. Then the latest sample of
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Xm (1) in the mth FFT input buffer is X, (fp). The previous
sample in that buffer is X,,,(t; — T,), and the earliest sample is
Xm(to — [K — 1]T)). If we define the signal X, () to be!

«‘-‘mA(’):-‘.‘ml(I_[k- ”Ts)1 (33)
we may write these samples as
Xy (19) = -x:ml (’0)’
Xt — T_\) = Xma{ty),
'X:IHI(,O_[K— l]Ts)zimI\(I())° (34)

Now consider the FFT obtained from these samples. Let the
K frequency domain samples produced by the FFT behind
element m be denoted by V.., V2, **, Vux. These y,, are
given by*

K
.ﬁmn = 2 -\-'/nA’(’())E(Ak “ b - “v

k-1

l<n<K,

(3%5)

where

Eg=e J27K), (36)

The array processor multiplies each frequencv domain
sample y,, by a complex weight u,,. We assume these
weights are sct to their optimum values, which maximize
SINR at the array output. (The weights can be controlled with
an LMS processor, an Applebaum processor, or any other
equivalent processor.) The weighted samples are then com-
bined, in one of two ways, to produce the array output. The
method used to combine the samples depends on whether
block processing or sliding window processing is used.

If block processing is used, the weighted frequency domain
samples from each element are added in corresponding
frequency bins. as shown in Fig. 5. This step produces array
output frequency domain samples f,. given by

M
j:r: E umnymn-
|

m

37

Then the inverse FET of the f, is taken to obtain the time
domain samples of the array output. If we denote the array
output signal by s(f). and its samples by §;(f).

Sty =sty-k-1]T), I=k=K, (38)

 Equation 133} has the same form as (1) of Section 11, with T, replaced by
T,

* les common an the FFT bterature [10] to denote the time domain samples
by Xo, X,, -+, Xx and the frequency domain samples by X, Xy, -, X, .
In this case the FFT iy usually wruten

A
X, 2 x £y, O<n<K 1.
and the TFFT

IA |
nop Y XENM OsksKoL

However, 1o make our FFT notation correspond to that in Section 1, we
instead write the FFT asan 135) and allow the indices &, nto vary from | to K.

then the inverse FFT of the £, produces the following time
samples of (1),

1 X
Sl) =0 B LHEK DD, IsksK. (39)
n=1

In a practical array, the factor 1/K in (39) may be omitted.

This factor is simply a gain constant in the array output signal,

and it has no effect on the output SINR. ' Hence we assume the

array output is actually obtained from
LY

Silt) =Y, JEZK-n-b 1<k s<K.

n=)

(40)

Thus, with block processing, a block of X input samples is
used in this manner to produce a block of K array output time
samples. The entire process is repeated every KT, s, using for
each cycle an entirely new set of K samples from each
element.

If sliding window processing is used. on the other hand, it is
not necessary to perform the [FFT in (40). Note that the most
recent sample of §(¢), $(4). is given by (40) with k = 1,

K
$(t)=5ite)= Y -

n=1

(41)

Thus $(#) is just the sum of the f,. With sliding window
processing, the other samples of §(¢) that could be found from
(40) are not needed, because an entire FFT cycle is performed
for each new input time sample. Successive samples of the
array output are obtained simply by repeating (41) at each
sample time. Hence the total array processing in this case is as
shown in Fig. 9.

Note that the optimal weights u,,, in the processor are the
same regardless of whether block processing or sliding
window processing is used. The optimal weights maximize
SINR. defined by

P, :
SINR = , 1(42)
P.+P, !

t
.

where Py, P,, and P, are the average desired. intcrferencé and
thermal noise powers at the array output, respective]y. If
$4(8), $,(t)) and §,(r;) denote the desired, interference and
thermal noise signals at the array output at a particular sample

time ¢,. then these powers are given by :
Py=E[|$,(1))]°], 43)
P.=E[[$,()I*], (44)
and
Py = E({$,(1)1%]. (45)

Because we assume the signals X, (f) are stationary, the array
output time samples arc also stationary. Hence each of the

' An LMS processor adjusts the weights so the array output matches the
reference signal. Omiting the factor 17K just results 1n weights smaller by a
factor 1/K than they would have been. For an Applebaum processor, the
optimal weights contain an arbitrary gain constant any way . such as g 10 (26)
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Fig. 9. Sliding window FFT processing.

powers in (43)-(45) has the same value at every sample time
t,. Therefore the weights that maximize SINR at one sample
time also maximize it at every other sample time.

To see that the optimal weights with sliding window
processing arc the same as thosc wuh block processing, it
suffices to note that the array output for sliding window
processing in (41) is the same as the array output for block
processing in (40) when k& = 1. Hence the weights that
maximize the SINR at the & = 1 sample for block processing
also maximize if for sliding window processing.

Since the optimal weights are the same for either type of
processing, and since these weights produce the same output
SINR in either case, we shall simplify the discussion below by
considering only sliding window processing.

Now let us consider the relationship between FFT process-
ing and tapped delay-line processing. First, we note that (33)
for the time samples in the FFT processor has the same form
as (1) for the signals in a tapped delay-line processor, except
that the intertap delay T, in (1) is replaced by the sampling
time T, in (33). Hence, for mathematical purposes, we may
view the samples in the FFT processor as having been
obtained from tapped delay-lines as shown in Fig. 10. If the
delay between taps in Fig. 10 is T, and if every tap is sampled
simultaneously at 1 = f,, the same set of K samples will be
obtained from the tapped delay-lines as from a single A/D
converter behind each element as in Fig. 9.

Second, we note that the frequency domain samples J,,, are
each a linear combination of the input samples £, (fo). The
linear combination is just the FFT in (35). Third, we have
shown that the array output (for sliding window processing) is
just the sum of the weighted frequency domain samples as in
(41). Hence, an array with FFT processing is mathematically
cquivalent to an array with tapped delay-lines, followed by a
linear transformation of the signals, followed by weighting
and summing, as shown in Fig. 10.

Morcover, note that the A/D converters at the delay-line
taps in Fig. 10 play no fundamental role in the operation of the
array. The same array output sampies would be produced by

LINEAR
TRANSFORMATION
T

Fig. 10. An equivalent tapped delay-line array.

TRANSFORMATION
T

Fig. 11. A simpler equivalent tapped delay-line array.

eliminating the A/D converters in Fig. 10 and instead putting a
single A/D converter at the array output as in Fig. 11. The
array is then an analog adaptive array with tapped delay-lines,
followed by an A/D converter at the array output. The A/D
converter in Fig. 11 serves only to discretize the array output,
but has no effect on the output SINR of the array.

The transformation between the X, (fy) and the 7, in (35)
may be expresscd in matrix form as in Section I, of course.
Let X.,(fo) be the element signal vector at time ¢,

Xm(to) = Xm1(to), Xm2(t0), ***y Xmx(to)]7. (46)

Then X,,(fp) contains the FFT input samples from element m
used in (35). Also, let Y, be a vector containing the frequency
domain FFT samples from element m,

ym‘_‘[ﬁmlv Fmar " imk’]r- (47)
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Then Y,, and X, are related by
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Yon=EXp, (48)
where, from (35), £ is the matrix
g8 g om
B} Ey B EX
E-|E} Ei Ej Egf "
. - :2K—|) . o
Ey ELEMCV. EE
(49)
1 1 |
1 eAth(I/K) - e—ij(K - 1/K)
e~er(2/K) . e*j?.ﬂZ(K -1/ K

| e J2xK-UK) e-»jzx((K-IF/K)

If X(#5) is the complete signal vactor for the entire array,

r Xi(to) 7

Xupy=| ~ 7 | (50)

L XM(’O) J

and Y is the vector containing all the frequency domain
samples,

- Y' -
Y,
Yy =| 7 71, (51
Yvm |
then Y and X are related by
Y=TX(), (52)
rE | 0 | [0 7
e e e
o | E | | 0
r={ "1 =1 =1 -=1 (3
! i l
el
L0 1 0 | | E |

Note that T is a block diagonal matrix. It has this form because
each FFT uses time samples from only one array element.
T is an invertible matrix, of course . The inverse of E in (49

is just the inverse FFT in matrix form,

£ B . £
. IS
| E;z EKI EK( | b
E'l= | & &7 E;M Y
Eﬁ- Ek—'ql\‘fn EK(A b
(54)
1
= - E*.
K
The inverse of T is then just
rE* ;7 0 | 007
I e e B
, o | E* , 0
Tltk -= *'— e (55)
\ i |
i B B
L 0 1 0 | | E*
1
= =T
K

Thus, an array with FFT processing is mathematically
equivalent to a tapped delay-line array with a linear invertible
transformation between the taps and the weights. The equiva-
lent tapped delay-line array has the same number of taps in
each delay-line as the number of samples in the FFT's, and has
an intertap delay T, equal to the sampling time 7. It then
follows from the theorem in Section II that an array with FFT
processing will produce the same output SINR as the corres-
ponding array with tapped delay-lines. The FFT's can be
inserted or omitted with no change in performance.

An important conclusion that follows from this result is that
FFT processing in and of itself does not offer any improve-
ment in array bandwidth performance. The same bandwidth
performance can be obtained simply by storing K samples of
each element signal and then weighting these samples directly.
Including the FFT's betwecen the samples and the weights
merely adds to the computational burden, but does nothing for
the bandwidth performance.

IV. AppirioNal. CoMMENTS ON FFT PROCESSING

In this section we discuss a few additional points of interest
concerning FFT processing.

A. Optimal Weights With and Without FFT Processing

First, we consider how the optimal weighis with FFT
processing compare to those with tapped delay-line process-
ing. Let U and W be the optimal weight vectors with and
without the FFT transtotnation T in the array. respectively.
Then, from (21), U and W arc related by

1=[T* 'W. (SA)
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However, the matrix T in (53) is symmetrical, because £ in
(49) is symmetrical. Hence (56} simplifies to

U=T"'"W. (&0

Moreover, U and W may each be expressed in terms of
element weight vectors U, and W, as in (5). Equation (57)
then reduces to

Un=E'W,, l=ms<M. (58)

Hence the optimal weight vector behind each element with
FFT’s is just the inverse FFT of the optimal weight vector
without FFT’s. Note that because (57) holds, the same array
output signal is obtained with or without the FFT's,

YTU=[TX)T[T 'W|=XTW, 59

as the theorem of Section II requires.

B. Covariance Matrix Eigenvalues

Next, we consider the eigenvalues of the covariance matrix
seen by the adaptive array processor with and without the
FFT's. These eigenvalues are of interest because they control
the transient behavior or convergence properties of the
algorithm used to adapt the weights [11]. Without the FFT’s,

the signal vector is X and the covariance matrix is
&, =E[X*XT]. 60

Suppose ¢, has orthonormal eigenvectors e,, and eigenvalues*
A
1

b.e,=N.e I<i<KM. (61)
The eigenvectors e,, satisfy
e"’_exj =9, 1=i, j<KM (62)

where the superscript dagger denotes conjugate iranspose and
d;; is the Kronecker delta.
Now define new vectors
e, =VKT ley,

l<i<KM. (63)

These e,; also form an orthonormal set. From (63), we have
e, e, =eL VKIT'|'VKT e, (64)

But because T'is symmetrical (T7 = TYand T-! = (1/K)T*

(see (55)). we have

1 t ]
T":(—T*) ==T, 65
(7] P X (65)
so (64) reduces to
1
e e, =Ke, —TT 'e,
Yy X K V)
=e;’e,/
=6, 1 <1, j<KM. (66)

* &, 1v a positive definite Hermitian matrix, so it has a complete set of
cigenvectors and its cigenvalues are all real and poitive

Now substitute e, = (1/VK)Te,, (the inverse of (63)) in
(61) and multiply on the left by T '. This gives

T '®,Te,=\e,. 67)
Then replace 7 ' by (1/K)T* and T by T7,
[T*®,TTle,, =K\ e, (68)
Finally, from (18) note that
T*$,TT= (69)
so (68) is just
de, =K\ e, I<i<KM. (70)

Equation (70) shows that e,; and K\, are the ith eigenvector
and eigenvalue of ®,. Thus, each eigenvalue of &, is simply K
times the corresponding eigenvalue of ®,.

From this it follows that ¢, and $, have the same eigenvalue
spread. (The eigenvalue spread is the ratio of the largest to the
smallest eigenvalue.) Hence typical problems caused by
eigenvalue spread, such as long convergence times, roundoff
errors in covariance matrix inversions, etc., will be the same
with or without the FFT’s.

C. Weight Dynamic Range

Now we consider an issue of practical interest: how FFT
processing affects the dynamic range of the weights. We may
gain insight into this question as follows.

McClellan and Parks [12] have studied the eigenstructure of
the FFT transformation matrix. From their results, it is easily
shown that the matrix E in (49) has a complete set of
orthonormal eigenvectors eg, 1 < j < K, and that every
eigenvalue )\E of E has one of the four values VK, ~VK,
+jVK, ot — j\/_ K. The multiplicity of each eigenvaiue varies
with K, the order of E.

From the eigenvectors and eigenvalues of E one can obtain
the eigenvectors and eigenvalues of 7 in (53) in an obvious
way. Each eigenvector er; of T will have (M - 1K
components equal to zero and K components consisting of one
eigenvector eg; of E. The eigenvalues A7, of T will be the same
as those of E but with multiplicities M times higher.

Suppose W is the optimum weight vector without FFT's and
U the optimum weight vector with FFT’s. Then from (21) we
have

U=[TT|"'W=T"Ww. an

The optimal weight vector W may be expressed in terms of its
components along each of the eigenvectors of T,

MK
W= 2 ajerj (72)

=\
where each a; is a scalar constant. Moreover, the matrix 7 -!
may be written in terms of the eigenvectors er; and eigenvalues
Ar; of T using the spectral decomposition formula

MK

1
T-1 ‘—’2 - Erle;-__.

."1)‘71 !

(73)
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Substituting (72) and (73) into (71) then gives

MK a
U=y, }\—’ er,. (74)

0 O
We cannot determine the magnitude of the components of U
exactly without considering specific cases, because some Az,
are real and some are imaginary. But because I)\rj[ = VK for
every /. (74) shows that the weights with FFT’s will generally
be smaller than the weights without FFT’s by a factor of about
1/VK. The ratio of the largest to the smallest weight is
approximately the same with or without FFT processing.

D. Performance Differences Between Tapped Delay-Line
and FFT Processing

Next, let us consider how the delay parameters are usually
chosen in tapped delay-line and FFT processors. In the
introduction we noted that array performance can be poorer
for FFT processing than for tapped delay-line processing. Fig.
6. showing typical results with FFT's, was compared with
Fig. 4 for tapped delay-lines.

However, it is clear from the results of Sections {I and Il
that the SINR achieved by an array with FFT's must be
identical to that achieved by the equivalent tapped delay-line
array. The equivalent tapped delay-line array has the same
number of taps as the number of samples in the FFT's and has
an intertap delay equal to the FFT sampling interval.

The performance difference noted in the Introduction is due
entirely to the fact that typical comparisons have assumed
different intertap delays or different numbers of taps for the
two types of arrays. For a tapped delay-line processor, the
intertap delay is often assumed to be a quarter wavelength at
the carrier frequency. For an FFT processor, the sampling
time is usually chosen so the period of the FFT frequency
response approximates the signal bandwidth. These two
amounts of delay are usually very different.

Consider a typical case. First, suppose the signal carrier
frequency is wy. The time delay required to produce a 90°
phase shift at the carrier frequency (a quarter-wave delay) is
then

Too=7. 75
% 2(0() ( )

In general, suppose we have
To=rTy, (76)

where r is the number of quarter-wave delays in 7,. Although
there is actually no fundamental reason to do so, with tapped
delay-line processing it is common [4] to assume’ r = 1.

Now consider the choice of 7; in an FFT processor. We
may view the FFT in (35) as a filter bank. The input to the
filter bank is X, (¢) and the outputs are Jmiy Vma, "y k-
One filter produces the output ¥,,, another produces the
output ¥,,,. and so forth. Let us consider the transfer function
of each of these filters.

1t s shown in |7} that for a two-efement array any choice of 7 in the range
0 < r < 178 will work just as well

Suppose the input signal X, (f) is a sinusoid at frequency w,
fm|(f)=e/“”. (77)
Then, from (33),

Xk (1) = /1! == DT, (78)

For a specific n, the output signal y,, may be found by
substituting (78) into (35),

K
ymn: 2 X (l)e - jRa/KNk - 1)¥n-1)
k=)

X
= 2 e~ Jtk - DwTg+ Qx/K)n - D gjui

k=1

(79)

This may be written,

y~mn =H, (w)ejwl’ (80)

where H,(w), the nth transfer function, is
Hn(w)

K
= E e~ k=T +Q22/K)n- 1)
k=1

sin f [:..)T,+2—7r (n— l)]
2 K
sin 1 [wTS+2—r (n- l)]
2 K
8n

In general, H,(w) is a periodic function of frequency with
peaks at frequencies

2T n—-1
=— (- ’ i=“'9 _21—1701 1,2,"'.
¢ r,[ K]

= e—j(K- 1)/2 [wTg+ 2x/K)(n~1)]

(82)

For a given #, the peaks of H,(w) occur every 27/ T, along the
frequency axis. For adjacent n, the peaks are separated by 27/
KT,. Fig. 12 shows a typical set of H(w), ' -+, Hx(w) over
part of the frequency axis.

In studies of FFT processing, it is common to choose T so
one compiete set of K filter passbands approximately covers
the signal bandwidth. (This choice seems sensible, since it
divides the signal bandwidth into K subbands.) If the signal
bandwidth is Aw, we set

2
?’: = Aw, (83
or
T,= kdd (84)
Aw
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However. (84) may be rearranged into the torm
™ @y 4
T\=4—_~“:—T‘m, (85)
Ju, A B
where B s the relative bandwidth of the signals.,
Aw
B="", (86)
wi

and Ty is given in (75). If. for example. the signal has a |
pereent relative bandwidth, then

T.=400 Ty, (87)

Note that this choice corresponds to r = 400in (76). i.¢.. to an
intertap defay of X0 quarter-waves in the equivalent tapped
delay -line array!

In Fig. 4. which shows the SINR of a two-clement tapped
delay -line array . there are two taps per element and one
guirter-wave delay between taps. In Fig. 6. which shows the
SINR for a two-clement array with FFT processing, the
sampling time has been selected according to (84). Thus. the
tapped delay -line array in Fig. 4 and the FFT array in Fig. 6
are not cquivalent. The ditference in their performance is duc
to the difference between 7o and T, as well as K.

In an carlier paper [7]. the author discussed in detail how the
number of taps and the amount of intertap delay affect the
SINR pertormance ot o two-clement tapped delay-line array.
In purticulur. it wis shown there that setting 7, according to
(84) (1.c..setting £ = 4/ B) makes r too large to obtain optimal
SINR trom the array. For optimal SINR. r must be in the
rance 0 =y < 178, Thus. although it scems intuitively
sensible to choose T, so the signal bandwidth is divided into K
subhands. i tact this choice yields suboptimal SINR. Better
pertormance with be obtained it 7. is chosen so the FFT period
v at least four times the signal bandwidth. The reader is
reterred o 7] tor further discussion ot this question.

E. An Advantage of FFT Processing

[t should be pointed out that even though FFT's do not
improve bandwidth pertormance per se. they may nevertheless
be usctul tor other reasons. For example. when the sample
mattiy amverse (SMD technique [8] is used to control the
werghts, the number of multiplications required for cach
werght update s proportional to (KM)'. the number of
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weights cubed. As a result. the computational burden in-
creases rapidly with the number of weights, and can quickly
become prohibitive. However, taking FFT s tends to reduce
the correlation between samples in different frequency sub-
bands. In the ideal case in which samples in different subbands
are completely decorrelated. the covariance matrix has a block
diagonal torm and the optimal weights can he computed
separately i cach subband. In this case one need only compute
M weights for cach of K subbands. so the total number of
multiplications is proportional to KM rather than KM, For
large K the computational savings may more than oftset the
extra burden of taking the FFT s,

In practice the samples in different frequency subbands are
usually not completely decorrelated. (The actual decorrelation
depends on the signal spectra and the sampling rate.)
However, even with imperfect decorrelation. it may sull be
advantageous to compute weights in cach subband separately.
Although the resulting weights are suboptimal. the computa-
tional savings may be worth the loss in SINR. Using FFT s in
the array makes this trade-off possible. Studies of this
approach have been made by Berni and Kretschmer [13].
Dillard {14]. Gabriel {15]. Gerlach [16] and Brennan and
Doyle [17].

V. CONCLLUSION

We have shown that the SINR achieved by an adaptive array
with FFT processing is identical to that achieved by an
adaptive array with the equivalent tapped delay-line process-
ing. In the equivalent tapped delay-line processor. the number
of taps in the delay-lines is equal to the number of samples
used in the FFT's. and the delay between taps is equal 1o the
delay between samples in the FFT s,

In Section 1, we showed that inserting a lincar invertible
transformation between the delay-line taps and the weights ina
tapped delay-line array has no etfect on the array output signal
or SINR. Whatever changes are caused in the signals by the
lincar transformation are compensated for by corresponding
changes in the weights. Then in Section I we showed that
using FFT"s behind cach ciement is mathematically equivalent
to using tapped delay -Hines followed by a lincar transformation
of the signals. The main conclusion follows from the results of
Sections I and 111

In Section IV, we considered the effects of FFT s on the
optimal weights. the covariance matrix cigenvalues. and the
dynamic range of the weights. Finally, we discussed the
reasons for the performance differences noted between FFT
processing and tapped delay-line processing.

The most important conclusion that follows from these
results is that FFT processing inand of itselt does not offer any
improvement in array  bandwidth performance. The same
bandwidth performance will be obtained by simply storing A
samples from cach celement signal and then weighting and
combining these samples directly. S
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Scattering by an Inhomogeneous Dielectric/Ferrite
Cylinder of Arbitrary Cross-Section
Shape—Oblique Incidence Case

ROBERTO G. ROJAS

Abstract—A moment method (MM) solution is developed for the fields
scattered by an inhomogeneous dielectric/ferrite cylinder of arbitrary
cross-section shape. The incident field is assumed to be a plane wave of
arbitrary polarization with oblique incidence with respect to the axis of
the cylinder. The total electric and magnetic fields are the unknown
quantities in two coupled integral equations from which a system of linear
equations is obtained. Once the total electric and magnetic fields within
the cylinder are computed, the scattered fields at any other point in space
are easily calculated. It is noted that for the case of oblique incidence, the
scattered field has TE. and TM, polarized fields regardless of the
polarization (TM, or TE,) of the incident field. The echo widths of
cylinders and shells of circular, semicircular, and rectangular cross
section are calculated for TE. and TM, polarized incident fields.
Furthermore, it is shown that the results obtained for dielectric/ferrite
cylinders and shells of circular cross section with the solutions developed
here agree very well with the corresponding exact eigenfunction solutions.

[. INTRODUCTION

HE ELECTROMAGNETIC scattering by dielectric

and/or magnetic bodies has been studied by several
authors in the past. For objects of arbitrary shape, two
formulations have been widely used; namely, volume (sur-
face) and surface (line) integral equations for three-(two-)
dimensional objects. These integral equations can then be
solved numerically with the method of moments.

The volume integral equations are obtained by replacing the
dielectric/ferrite objects, which can be inhomogeneous, by
equivalent volumetric polarization currents. This method has
been used in [1]-[6} to solve scattering problems from two-
and three-dimensional bodies and to study the fields induced
inside biological bodies [7]. A different approach is the
surface integral formulation in which a homogeneous dielec-
tric object is replaced by equivalent currents along the surface
of the scatter. This method, which can also be used to study
objects made up of homogeneous layers, is employed in [8]-
[11]to solve a variety of problems involving dielectric objects.

In addition to the two methods mentioned earlier, a
characteristic mode solution is developed in [12] for two-
dimensional dielectric bodies which are replaced by equivalent
surface currents. A different approach is followed in {13],
where an impedance sheet approximation is used to study the

Manuscript recerved July 21, 1986; revised August 3, 1987. This work was
supported in part by the Joint Services Electronics Program under Contract
NO0O14-78-CO049 and in part by The Ohio State University Research
Foundation.

The author is with the ElectroScience Laboratory, Department of Electrical
Engineering. The Ohio State University, Columbus, OH 43212.

IEEE Log Number 8718298

EM scattering from thin dielectric shells. The unimoment [14]
and finite element [15] methods have also been used to
calculate the ficids scattered by dielectric cylinders. Recently.
the conjugate gradient method [ 16} has been applied to analyze
the scattering from two-dimensional dielectric structures.

The problem considered in this paper is the EM scattering
by-a dielectric/ferrite cylinder of arbitrary cross-section shape
[17]. The incident field is a plane wave of arbitrary polariza-
tion with oblique incidence with respect to the axis of the
cylinder as shown in Fig. 1. The cylinder is assumed to be
linear and isotropic; however, it can be inhomogeneous and
lossy. By replacing the cylinder with equivalent polarization
currents, two coupled integral equations are obtained for the
total electric and magnetic fields inside the dielectric/ferrite
cylinder. The solution of the integral equations is obtained by
following a method similar to that employed by Richmond [1],
{2]. That is, the cylinder is divided into square cells which are
small enough so that the electric and magnetic fields are nearly
constant within each cell. except for the exponential z-
dependance of all the fields due to the oblique incidence of the
plane wave with respect to the axis of the cylinder which
coincides with the z-axis. A system of linear equations is
obtained by enforcing the condition that the integral equations
must be exactly satisfied at the ceater of each cell. Unlike [1].
[2], this paper considers the general case of dielectric/ferrite
cylinders. Furthermore, as mentioned before, the incident
plane wave field is obliquely incident to the axis of the
cylinder, and it can have arbitrary polarization. Note that all
the fields in the following discussion have the conventional
e’/“' time dependence which is suppressed to simplify the
notation.

II. FORMULATION OF THE PROBLEM

Assume that (E’, H’) is the incident field in the absence of
the dielectric/ferrite cylinder. Without loss of generality, the
medium exterior to the scatter is assumed to be free space. Let
(E, A) represent the total field; that is, the field excited by the
incident field in the presence of the dielectric/ferrite cylinder.
The difference between the total and incident fields is usually
referred to as the scattered field (E, ﬁ‘). Thus,

E=E'+E

It follows from Maxwell's equations that the scattered field
(Es, /) may be considered to be the field generated by a set of
equivalent clectric J and magnetic M polarization currents

A=H"+H>. 1))

0018-926X/88/0200-0238%01.00 © 1988 IEEE
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Fig. 1. Geometry for EM scattering by dielectric/ferrite cylinder of
arbitrary cross-section shape.
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radiating in free space. These currents can be expressed as
follows:

J(F)=jkYole,(5) - DE(F)
M (F) = jkno(u(3)- D AF) (2)

where ng and Y, = 1/9, are the free-space impedance and
admittance, respectively, and k is the free-space wavenumber.
Furthermore,

eAp)=e (F)-je[(P); € (F) 21, ¢€(p)20

is the relative permittivity, while

W (B2, w20
(3b)

is the relative permeability. Also 7 = £x + Jy + Zzandp =
£x + py. Note thate, (), € (7), u, (7). and u,” (p) are all real
quantities whose values depend on 5, but not on z.

Since the cylinder is a two-dimensional object and the
incident field is a plane wave, the poiarization currents 7 and
M and all the field components will have the same exponen-
tial z dependence as the incident field. It can be shown [18]
that if all the field components have the same exponential z-
dependence exp (jkz cos 6’), then, all the fields can be
expressed in terms of £, and A, as follows:

E(7) =V x(V X (ZE(F)) - jknoZH (F))/K?

uAB)=u/ (P)—ju(P);

and
A(F) =V x(V x (ZH(F) + kYo ZEPWV/KE  (4)
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where K = ksinf’ and 0 < 8’ < . Therefore, the complete
solution can be expressed in terms of E, and H, only. Thus,
assume that the incident field (E;, H;) is given by

Ei(7)=Ey, exp (—jKB - B) exp (- jk]2)

and

H(F)=Ho, exp (- jKp - p) exp (- jk 2) 5)
where £y, and Hy, are arbitrary constants, k, = — kcos6’,
and

P=—-%Xcos¢p’'—Fsing’. 6)

Note that, except for e~/*z2, this problem is still a two-
dimensional problem. To simplify the notation, the z depen-
dance of the fields and currents in the following analysis will
not be shown explicitly.

Once the electric and magnetic currents are defined, the
scattered fields (E*, H*) can be expressed in terms of the
electric and magnetic free-space dyadic Green's functions,
namely [19]

Eg)=-lim | G 7 MG

. - -JE
s kg0 7)) Ty as' -T2 o)
JkY,
A=t | 18G5 TG
- MG
—jkY,8%5, ') - (")) ds’ MG
Jkno

where A, is the area occupied by the equivalent currents and
p' = £’ + §y’ is the source location. The area A;, which
excludes the singularities of £2and £2,i.e., 5 = p", is called
the *‘principal area’” [19]. It becomes infinitesimally small in
the limit as its maximum chord length  approaches zero.
Since the value of [ and the integrals in (7) and (8) depend on
the geometry of A;, the area A; is assumed to be a circular
disk. The reasons for choosing this shape will be explained
later. The electric free-space dyadic Green's function 9 is
given by

oz 3«2 (1.7 Hovkiz_ =1 =en
825, 5=~ 7*? HP(K|5~5'): 5#6°, (9

while the magnetic free-space dyadic Green's function &9 can
be expressed as follows:

| .
£,.(5.5") == VxUHP(K|F-5"|); 5#5 (10)

where

T=%2+59p+3%

V-fa+ﬁa+“k 6’
=% 3 Zjk cos

x y

1
T=5 (%% + $9) (10b)
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and H is the Hankel function of the second kind of zeroth
order. It is important to point out that even though [ and the
integrals in (7) and (8) depend on the shape of A;, their sum
does not.

To obtain the integral equations, one enforces (1) inside the
dielectric/ferrite object; namely,

EG)y+lim | Uknolw5) - 11855, 5)
=0 Ja,-ay

- HE ) - ke 3 ) - 118%5, 5) - E@' ) ds’

+le@ -1T- EG)=E'@) (11
and
AG)-lim | UkYoleG) - 1855, 5)
Ay-As

- E@E)+ K- 1185, B) - HE')) ds’
+{w@E -1 - HE)=H(@). (12)

Note that (11) and (12) are coupled integral equations where
the unknowns are the fields E(3) and H(p).

II1. SoLuTioN

The solution of the coupled integral equations in (11) and
(12) will be obtained in a fashion similar to that followed by
Richmond ([}, {2]. That is, the integral equations are
transformed into a system of linear equations by enforcing (11)
and (12) at a number of discrete points. The first step in this
procedure is to divide the cylinder into N square cells which
are small enough so that the electric and magnetic fields are
nearly uniform in each cell. This is equivalent to choosing the
pulse functions {f,(5-)}~_, as the basis functions [20]. That
is, let

p )= E Epnfn(al)

P )—2 Hpnfn(p )

n=1

p=x,y,z (13)
where
(14)

- |1, in cell n of area c?
S0 = [O, elsewhere ”

and {E,,, H,,}” | are unknown coefficients that have to be
determined. The second and last step in the discretization of
(11) and (12) is to define a set of testing functions [20]. Here,
the Dirac delta functions {6(x — x,)8(y — y,)}*_, are chosen
as the testing functions, where (x,, ¥,) is the center of cell n.
This is equivalent to enforcing (11) and (12) at the center of
each cell; i.e.. the total field must be equal to the sum of the
incident and scattered fields at the center of each cell.
Substituting (13) into (11) and (12), and enforcing (1) at the
center of each cell, a set of 6V simultaneous « Juations with 6V
unknowns is obtained. Note that, in general, there are six
unknowns in ecach cell, i.e., E,, E,, E,, H,, H, and H,.
However, as shown in (4), only two field components;
namely. E, and H,, are necessary to determine completely the

total E and A fields. However, the expressions for E,, E,, H,,
and H, involve the derivatives (with respect to x and y) of E,
and H,. Thus, if the derivatives of £, and H, are approximated
by finite differences, (11) and (12) would become difference
equations. Therefore, all six unknowns are kept in each cell to
avoid this complication. The resulting set of 6NV simultaneous
equations with 6V unknowns can then be written in matrix
form as follows:

Z(e, p)X=Y (15)

where Z(¢,, p,) is a 6N X 6N matrix and X and Y are 6N x 1
column vectors, which are given by

—z. ) g
5 £
_ E Ei
X= : Y= . (16)
noH, UOH;
"IOHy WOH;
_"IOHz_J ___TloHi__

The vectors £,, H,, E;',, and fl; (p=x,y,7)are N x 1
column vectors and they can be expressed as follows:

L =1E,, Epy 02 By ooy Epy)T
p=[Eph EpZ’ T Epm Y EpN]T
ﬂjz:[H;r’H:zz"”'H' ..,Hi

. T
pn’ PN }

Hp=[lev HpZ- Tt Hpm T HpN]T; p=x,y,z (17

where E jm and H ;'m represent the p components of the incident
electric and magnetic fields, respectively, at the center of cell
n and T denotes the transpose operation. Note that E,,, and H,,,
were defined in (13). That is, E,, and A, represent the total
electric and magnetic fields, respectively, at the center of cell
n.

In calculating the elements of the matrix Z(e,, u,), the
following types of surface integrals need to be evaluated:

2

L,=1li HP(K p'|) ds’
"= SAJM‘Acm axy, 0x; Klo=#"h
r =1 2) -~ _ e ’
I =lim le_% HO(K|5-5") ds
I =tim | 2 HpK|F- 5l s, FITXON
50 J Ay, - A5 OX, 'Xy=xo0ry
(18)

where A, is the area of the mth cell and Ay, is the principal
area located at the center of the mth cell. In general, these
integrals cannot be evaluated in closed form, except for some
special geometries, e.g., circular disks. Thus, some sort of
numerical integration algorithm must be used to evaluate these
integrals, keeping in mind that care should be exercised when
the observation point is within the mth cell. The expressions
given in (18), where the singularity of the integrand is isolated
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by A, as the limit & — O is taken, are, in general, not suitable
for practical numerical calculations. This is due to the fact that
one does not know a priori how small 4;,, should be to obtain
a result with a preselected accuracy. There are alternative
expressions given in [19], [21] where A,, is a finite-sized
pricipal area. These alternztive expressions are more suitable
when (18) has to be evaluated numerically.

As already mentioned, when A, is a circular disk, the
integrals in (18) can be evaluated in closed form [1], {2]. Thus,
to simplify the evaluation of the elements of the matrix Z(e,,
u,), the square cells are replaced by circular disks of the same
cross-sectional area. Furthermore, as indicated before, the
principal area Ay, is also assumed to be a circular disk which
allows the closed-form evaluation of the integrals in (18). It is
shown in the next section that this approximation, which
greatly simplifies the evaluation of the elements of Z(e,, u,),
gives good numerical results.

The matrix Z(e,, u,) in (15), which is partitioned into
submatrix blocks, is then given by

NRACREAT)
Z(Erv “r)_ [-—Zz(f,) .: z'(#r)] (19)

where Z, and Z, are 3N X 3N matrices and can also be
partitioned into submatrix blocks, namely,

AiBiCc) ) 0 DIF
Ze)=[BI1 ] Zu)=| =D} 0L
C:JiP -Fi-Li0
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where 0 is the null N x N matrix. The matrices A, B, C, 1, J,
P, D, F, and L are N x N matrices whose elements are given
by the following expressions:

Am#+nnm=1,2--- N

& T n K n
A, = (e l)rKa Ji(Ka,) [k;zHBZ)(Kpmn)/KZ
2j
— "K3 ma\)Ym ™~ Jn ZH(I) mn
+(Kp,,.,.)’[ Pmn(Ym—Yn) HP (Kpma)
+[(ym"yn)z_(xm‘xn)leZH?)(Kﬂmn)]] (21)
B - ~{€n— l)rl(a,,.l,(l(a,,)l(z(x,,,—x,,)(y,. =Vn)
" 2/(Kpmn)®
* [2H®(Komn) = KomnH P (Kpma)]l  (22)
rKa,, kzl K(xm—xn)
= — € — n—_—_H(Z)KmIl
Cmn (6 l) 2 Jl(Ka ) K (Kp,,,,,) 1 ( P )
(23)

Imn(xm' Xm }'m- }'n)-_-Amn()'m, ,Vm xmy xn) (24)
-,mn(xmo Xny Yy yn)=Cmn(ym' Vas Xms xn) \‘5)

Ka,
Pop= ~ (6,0~ ) xza Jl(Ka") H:)D(Kp'"") (26)
J
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’

; k
Do =’7" (Kay) i (KayYpin = 1) =5 HP Koy 27)

F 1rKa,. J (K )( ])K( ) k H(|2)(Kpmn)
mn = — Au N firn — m—Vn) L ——
1 # Ym =, K~ Kom
(28)
lel(xm’ Xny Yy Ya) = _an(ynn Yar Xms Xa) (29)
where
pmn=((Xm_xn)2+(ym—yn)2)l/2-
B.n=m
Bt = Conm = Jomm = L = From =0 (30)
(erm— 1D , .
Amm"—‘lmm: 1 —*—2-jl<—2— kz 2[1rKa,,,H<12)(Ka,,.)- 2_[]

] m— 1
A ke HO(Kan) - 4] (1)

Pan=1+% (= DixKanHP(Kam)=2/]  (32)

’

(trm— DxKa, HP(Kan)-2j]  (33)

=—_Z
where ¢, and pu,, are the relative permittivity and permeability
of cell n, respectively, and the radius of the nth circular cell,
denoted by a,, is equal to ¢,/ \x. Thus, (21)-(33) completely
define the matrices Z(¢,) and Z,(u,). The expressions for the
elements of Z,(u,) and Zy(¢,) can be easily obtained by
replacing ¢,, and p,, by p,, and €.,, respectively, in (21)-(33).
Note that by inserting the appropriate equations for the
incident field, one can obtain solutions for any two-dimen-
sional source, i.e., line source, array of line sources, etc.

Assuming that the simultaneous equations have been solved,
i.e., the total E, and H, fields have been determined at the
center of each cell, the scattered fields £ and H can easily
be obtained at any point outside the dielectric/ferrite body.
Thus, after reintroducing the function e~ *; 2, the expressions
for E¥ and H are given by

s _' ad kaﬂ"l(Kan)(I‘m_ l)
Ez(x! Y, Z)—E 2

n=1 Pn

H®(Kp,)

' {noHy,.(x—x,,) - ﬂonn()'—)’n)}e’j"z"
N

2—1(7 E a,Ji (Kan)(frn -1 [KIH(()Z)(KPn)

+
K

' Ezn+./k; - H‘lz’(Kp,,)[Ex,,(X—X,,)
Pn

+E.m(y—ynn] e hit (34)
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o (X, ¥y 2y Xny Vny = Exny — Eyn,
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=Ex, ¥, 2, Xn, Yn, N0H1n, noHyn,
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where
on=Hx- -xn)z +(y _yn)zl i,

The far-zone scattered fields are obtained by employing the
asymptotic form of the Hankel function (large argument form)
and by approximating p, as follows:

1
Pn~ Po — X, COS ¢_yn sin ¢; ——— (36)
Pn  Po

where py = (x? + y?)!”2. The expression for E; in the far
zone becomes

2 S Kasi(Ka,)

E{(p()v ¢' Z) ~J
< 2 x

n=1

k .
: l‘E (it — l)[noHyn cos ¢ —noH,, sin ]

k!
— (g~ WEp— ? (cos ¢E,, + sin ¢E,,,)]]

e Keo "
- e ka2 37
vV Kpo
and H'* is obtained by substituting (37) into (35).
The scattering properties of a two-dimensional body can be
expressed in terms of its echo width. The echo width W(¢, 8')
is defined as follows [18]:

. e/k'(x,, COSD + ¥y sin @)

Es(p, 0,0
HWio, 8 )= 1lim 2xp, uf?—%)—l . 38)
1 Bt

Substituting (4), (5), (35), and (37) into (38) yields the
following expression for the echo width per wavelength:
. Es 2+ H* 2
W(s,0)_ . ko0 |EZ12+ 1m0 H7| (19)
A 4 lEOZ‘2+"70HOzIZ
where A is the free-space wavelength.

Note that for the case of oblique incidence, the scattered
field will have both TM, and TE, polarized fields regardiess of
the polarization of the incident plane wave field. In the next
section, W(¢, 8’) sin 6’/\ will be calculated for various
geometries for a TM, and TE, polarized incident plane wave
field, respectively.

IV. NumMmericaL RESULTS

The resuits obtained in Section III have been implemented
with a Fortran program on a VAX 11/780 computer. Using
(35), (37), and (39), numerical results were obtained for the
following geometries.

A. Cylinder of Circular Cross Section

Figs. 2(a) and 2(b) depict the echo width of a circular
cylinder of radius 0.1\ for obliquely incident (8’ = 45°) T™,
(Eoe = 1, Ho, = 0) and TE, polarized (E,, = 0, noHo, = 1)
plane wave fields, respectively. For each polarization, two
sets of values of (e,, u,) are considered to illustrate the effect of
€ and u, on the echo width. As indicated in the previous
sections, the circular cylinder is divided into cells whose
cross-sectional areas must be as close to squares as possible. It
is known from experience [1], [2] that, to obtain good
numerical results, ¢ must satisfy the inequality

c < 0.1
N Veu,
where c is the length of one side of the square cell. In other

words, ¢ should be less than or equal to one-tenth the
wavelength inside the dielectric cylinder. The cylinder in Fig.
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2 was divided into 25 square cells (N = 25) of the same cross- TM, case, the echo width in the backscattered direction (¢ =
sectional area, i.c., (3.54 X 10-2\)2. The moment method 180°) is significantly reduced when the values of ¢, and u, are
solutions for the circular cylinder shown in Fig. 2 are changed frome, = 2 — j0.08, x, = 3 — jO3toe, = 3 —
compared with the exact eigenfunction solutions which consist 0.3, u, = 2 — j0.1. The opposite effect is observed for the
of infinite series involving Bessel and Hankel functions [22]. TE, case as shown in Fig. 4(b). The shell was divided into 41
Note that the agreement between these two independent cells (N = 41) which means that a system of 246 simultaneous

solutions is very good. equations was solved. It took about 3 min of CPU time on a
o ] . VAX 11/780 computer to obtain the moment method solution
B. Cylindrical Shell of Circular Cross Section for each polarization considered in Fig. 4. As in the case for

In Figs. 3(a) and 3(b), the echo width of a circular cylindri- the circular cylinder, the moment method solutions for the
cal shell is depicted for a TM, and TE, incident plane wave, circular shell are compared with the exact eigenfunction
respectively. In both cases, the shell was divided into 66 cells solutions. The agreement between the two solutions is very
(N = 66) and the solutions for a normally and obliquely good as illustrated in Figs. 3 and 4.
incident plane wave are depicted. In Fig. 4 a shell with
different dimensions was considered. The angle 8’ was set to
45° and the parameters ¢, and u, were changed to illustrate the Figs. 5(a) and 5(b) show the echo width of a semicircular
effect of these parameters on the echo width. Note that for the shell which was divided into 20 cells of the same cross-

C. Semicircular Shell
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polarization: Eg, = 1, noHo, = 0. (b) TE, polarization: Eo, = 0, noHo, = 1.

sectional area. Both the TM, and TE, polarizations are
considered; however, no exact solution is available for this
geometry to compare with the solutions obtained here. To
study the effect of the angle 6 on the echo width, Fig. 5 shows
the echo width calculated for a normally and obliquely incident
plane wave, respectively.

D. Cylinder of Rectangular Cross Section

Finally, in Figs. 6 and 7, the echo width of 2 cylinder of
rectangular cross section is considered. In Fig. 6, Ye angle of
incidence is ¢ = 90° (broadside), while in Fig. 7, the case of
grazing incidence is considered (¢’ = 0°). Note that in both
cases 8° = 45° and unlike the previous examples, the cylinder

is allowed to be inhomogeneous. First, the echo width of a
homogeneous rectangular slab is calculated fore, = 3. — 0.3

and g, = 2. — jO.1. Next, the same slab is assumed to be
inhomogeneous (in x), namely,

€(x)=3.—j0.3+2cos (xx/L)

g (x)=2.-j0.1)|x|/L+1
where x varies from — L/2 to L/2 and L is the width of the
rectangular slab. Since the integral equations in (11) and (12)

are enforced at the center of each nth cell, ¢, and y, have to be
evaluated at (x,, y,). Thus ¢, and yu,, can be written as

R —
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follows: number of Z. Unfortunately, as pointed out in [24], the

en(x,)=3.—j0.3+2 cos (xx,/L)
Brn(Xn) = (2= jO.1)| X, | /L + 1.

Since the cylinder was divided into 80 identical square cells, a
system of 480 simultaneous equations was solved. As in the
case for the semicircular shell, no exact solution is available
for the cylinder of rectangular cross section.

V. CoNcLUSION

A moment method solution has been developed to calculate
the scattering by a dielectric/ferrite cylinder of arbitrary cross-
section shape. Even though the cylinder is assumed to be linear
and isotropic, it can be inhomogeneous and lossy. It is noted
that for the problems considered here, the integral equations
for the electric and magnetic fields are coupled. The solution
of this pair of integral equations was obtained by transforming
them into a system of simultaneous linear equations by
choosing appropriate basis and testing functions. In this paper,
pulse and Dirac delta functions were chosen for the basis and
testing functions, respectively.

It is possible to improve the accuracy of the solutions
presented here by evaluating the integrals in (18) numerically
over the square cells; however, this obviously will increase the
CPU time. An alternative approach is to follow the procedure
described in [23] where the square cells are still approximated
by circular disks, but a new set of basis functions is used which
takes into account the variation of the fields within each cell.
This method, as shown in [23], allows the use of larger cells
resulting in a smaller matrix. However, the calculation of each
element of the matrix is more difficult than in the method
followed here. It is noted that, in the solutions presented here,
their sensitivity to errors in the calculation of the elements of
the matrix Z can be checked by computing the condition

——
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condition number will not indicate whether the best expansion
functions are being used. Finally, several numerical examples
were presented and compared with the exact eigenfunction
solutions when they were available. The agreement between
the independent MM and exact solutions was shown to be very
good for the cases considered here. An interesting feature of
the case of oblique incidence in problems involving dielectric/
ferrite cylinders, which does not hold for the special case of
normal incidence, is that the scattered field has TE, and TM,
polarized components regardless of the polarization (TM, or
TE,) of the incident field.
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An Overview of the Hybrid MM/Green’s
Function Method in Electromagnetics

EDWARD H. NEWMAN, SENIOR MEMBER, IEEE

This paper presents an overview of a hybrid technique for solv-
ing electromagnetic radiation and scattering problems by com-
bining the method of moments (MM) with a special Green's func-
ton. The method, commonly referred to as an MM/Green’s func-
tion solutior combines the ability of MM solutions to treat geo-
metrically complex bodies with the accuracy and computational
efficiency of Green’s function solutions. As compared to a stan-
dard MAT solution, the MM/Gre~n’s function solution reduces the
number of unknowns, and thus reduces the computer storage
requirements. In most, but not all cases, the CPU time for the MM/
Green’s function solution is considerably less than that for a stan-
dard MM solution. The basic formalism of the MM/Green’s func-
tion solution 1s presented and contrasted to that of the standard
MM solution. The example problem of TM scattering by a semicir-
cular strip 1 the presence of a circular cylinder is solved by the
MM, and by the MM/Green’s function technique with a matrix,
exact eigenfunction, and high-frequency Green’s function.

L INTRODUCYTON

This paper will present an overview of a technique which
combines the method of moments (MM) [1]-[3] and a
Green’s function [4] in the solution of electromagnetic
radiation and scattering problems. The technique is termed
an MM/Green’s function solution and combines the flex-
ibility of MM solutions for treating scatterers of complex
geometry with the accuracy and computational efficiency
of Green’s function solutions.

A general problem in electromagnetics is that of finding
the fields of known orimpressed currents radiating in a vac-
uum or homogeneous medium in which is present one or
more inhomogeneities or scatterers. Traditionally these
problems have been solved by what can be called Green'’s
function techniques. That is, one attempts to find either
exact or approximate explicit formulas, known as Green’s
functions, for the fields of an infinitesimal current element
radiating in the presence of the scatterers and/or bound-
aries. The fields of the known impressed current are then
found by superposition, that is by integrating through the
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region of the current the vector dot product of the current
distribution and the dyadic Green's function. Green's func-
tions tend to be highly accurate and, as compared to MM
solutions, in many cases they are computationally efficient
in that they can be evaluated with a minimum of effort. The
main limitation of Green's function solutions is that, except
for a few simple shapes [4]-{6], the Green's functions are
difficult to obtain, with each new geometry requiring a new
analysis.

With the widespread availability of high-speed digital
computers in the mid-1960s, a numerical technique known
as the method of moments (MM) [1]-{3] began to gain pop-
ularity. Consider the standard MM solution for a problem
involving two scatterers, which we term Scatterer 1 and
Scatterer 2. The first stepisto use the surface and/or volume
equivalence theorems [1], [7] to replace both scatterers by
free-space and equivalent currents. An exact integral equa-
tion for the equivalent currents is then formulated and
involves the relatively simple free-space Green’s function
in its kernel. The unknown equivalent currents are then
expanded as a finite sum of N, basis or expansion functions
on Scatterer 1and N, basis functions on Scatterer 2. N, and
N, weighted averages of the integral equation are enforced
on Scatterers 1and 2, respectively. This transforms the inte-
gral equation into an order N, + N, matrix equation, which
can be solved for the N, + N, coefficients in the expansion
for the equivalent currents. The total fields radiated by the
impressed currents in the presence of the two scatterers is
the sum of the free-space fields of the impressed currents
and the equivalent currents on Scatterers 1and 2. The main
advantages of the MM approach are that it is accurate and
extremely versatile as to the geometries which it can treat.
For example, while the exact Green'’s function solution for
scattering by a dielectric cylinder appears only to be pos-
sible for the circular cross section [6], MM solutions are
available for the scattering by dielectric cylinders of essen-
tially arbitrary cross section (8], [9]. However, as compared
to Green’s function techniques, MM solutions usuaily
require more computational effort.

Inan MM/Green’s function solution to the same two scat-
terer problem described above, Scatterer 1, but not Scat-
terer 2, is replaced by free-space and equivalent currents.
An exact integral equation for the equivalent currents rep-
resenting Scatterer 1is formulated and will involve the rel-
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atively complicated Scatterer 2 (as compared to the free-
space) Green’s function in its kernel. The unknown equiv-
alent currents on Scatterer 1 are expanded as a finite sum
of N, basis functions. N, weighted averages of the integral
equation are enforced on Scatterer 1. This transforms the
integral equation into an order N, matrix equation, which
can be solved for the N, coefficients in the expansion for
the current on Scatterer 1. The total fields radiated by the
impressed currents in the presence of the two scatterers is
the sum of the fields of the impressed currents and the
equivalent currents on Scatterer 1, both radiating in the
presence of Scatterer 2.

As compared with the Green’s function technique, the
MM/Green'’s function method has the advantage that it is
applicable to a much wider class of geometries. This is
because the MM/Creen’s function method requires that we
know the Green'’s function for either Scatterer 1 or 2, while
the Green’s function method requires that we can find the
Green'’s function for the combination of Scatterer 1in the
presence of Scatterer 2. As compared to a standard MM
soiution, the MM/Green’s function method has the advan-
tages that the number of unknowns in the matrix equation
is reduced from N, + N, to N,, thus reducing the required
computer storage. The disadvantages of the MM/Green’s
function technique is that since the kernel of its integral
equation involves the relatively complicated Scatterer 2
Green's function, the evaluation of a typical element in the
MMI/Green's function matrix equation is more difficult and
time-consuming than thatin a standard MM solution. How-
ever, if Scatterer 2 is substantially larger than Scatterer 1,
then N, >> N,, and the CPU time for the MM/Green'’s func-
tion solution is almost always considerably less than that
of the standard MM solution.

Probably the most common use of MM/Green's function
solutions has been for problems involving antennas in the
presence of a plane dielectric interface, such as a flat earth.
In this case, the antenna is Scatterer 1 and the dielectric half
space, representing the earth, is Scatterer 2. Of the many
papers in this area we mention the work of the group at
Lawrence Livermore Laboratory [10]-[13], much of which
has been incorporated into a user-oriented computer code
[14], the solution of Chang and Wait for a vertical wire over
the earth (15], the use of ray methods by Tiberio et al. to
represent the energy reflected from the earth [16], and the
use by Parhami and Mittra of an approximate but highly
accurate representation of the exact half space Green's
function{17]. Solutions for obstacles other than wires in the
presence of a flat earth have also been presented in [18]-
[20]. A closely related problem is that of printed circuit
antennas. Here the printed circuit antenna is Scatterer 1
and the dielectric substrate is Scatterer 2. Again, there are
a large number of papers, and we mention MM/Green's
function solutions for microstrip antennas by Pozar [21].
[22], Newman and Forrai [23], and Bailey and Deschamps
(24]. In addition, Alexopoulos et al. have published several
papers on printed circuit dipoles [25], [26]. A second related
areassthatof periodic arrays in multilayered dielectric slabs
ot which [27], [28) are representative.

Another popular use of MM/Green’s function solutions
has been for problems involving antennas or other obsta-
cles in waveguides and cavities. In these cases, Scatterer |
was the antenna and Scatterer 2 was the waveguide or cav-
ity. Possibly the first MM/Green’s function solution was
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Rao’s (29], [30] analysis of a two-element Yagi array in a par-
alte! plate waveguide in 1965. It is interesting that this work
was done before Harrington [2] published his description
of the MM in 1967. Other work involving wires in wave-
guides or cavities include Taylor’s [31} and Tesche’s [32]
solutions for a wire in a parallel plate waveguide, and Sei-
del's [33] solution for a wire in a cavity. MM/Green'’s func-
tion solutions for posts in waveguides have been done by
Leviatan etal. [34], Auda and Harrington [35], and Jarem [36).
Material bodies in waveguides have been analyzed by Wang
[37), Omar and Schunemann [38], and Hsu and Auda [39].
Khac and Carson [40] have analyzed a slot in a waveguide
and Thong [41] has analyzed waveguide discontinuities.

Several MM/Green’s function solutions have been
obtained for cases inwhich Scatterer 2 is one of the classical
shapes which fits into a separable coordinate system, and
thus has awell-known Green’s function. Solutions for wires
in the presence of spheres have been presented by Tesche,
Neureuther, and Stovall (42]-{44] and by Butler and Ke-
shavamurthy [45]. MM/Green’s function solutions involv-
ing circular cylinders have been done by Misra and Chen
[46], Steyskal {47], Karunaratne et al. [48], and Lamensedorf
and Ting [49]. Wire antennas near the edge of a half-plane
or awedge have been analyzed by Pozar and Newman [50],
[51). Newman has analyzed a material cylinder of arbitrary
cross section in the presence of a half-plane {52], [53], and
Newman and Blanchard [54] have analyzed an impedance
sheet in the presence of a parabolic cylinder. Section Il of
this paper presents an analysis for asemicircular strip in the
presence of a circular cylinder.

Most of the above referenced works were natural MM/
Green’s function solutions in that Scatterer 2 was one of the
few shapes for which an exact Green's function was known.
Thiele and Newhouse [55]) greatly expanded the range of
problems which could be solved via the MM/Green’s func-
tion technique by recognizing that the geometrical theory
of diffraction (GTD) [56] could be used to obtain the asymp-
totic or high-frequency Green'’s function for a large class
of electrically large bodies (Scatterer 2). This important spe-
cial case of the MM/Green’s function technique, where the
GTD is used to evaluate the Green's function, is referred
to as an MM/GTD solution. For problems involving elec-
trically small and large parts, MM/GTD solutions are ideal
since the MM can efficiently treat the electrically small part
of the problem (Scatterer 1), while the GTD can efficiently
treat the electrically large part (Scatterer 2). The earliest use
of the MM with an asymptotic Green'’s function appears to
be that of Green [57] for a monopole on the base of a large
cone. Other applications include that by Awadalla and
Maclean [58], (59] and by Marin and Catedra [60] to analyze
a monopole on a plate. MM/GTD solutions for wires on
curved surfaces have been presented by Ekelman and Thiele
[61] and by Henderson and Thiele {62}, [63]. Thiele and Chan
(64] have used the MM/GTD to efficiently generate large
amounts of frequency domain data so that the Fourier
transform could be used to obtain time domain results. Also,
Ko and Mittra [65] have developed an iterative MM/GTD
solution which allows for a check as to how well the solu-
tion satisfies the boundary conditions.

Harrington and Mautz [66] and Glisson and Butler [67]
showed that for a Scatterer 2 geometry which is so complex
that it is not feasible to obtain a functional expression for
its Green’s function, an MM/Green’s function solution is




still possible. This is done using a numerical Green’s func-
tion which is evaluated by an MM solution of Scatterer 2.
Harrington and Mautz used the MM to find the numerical
Green'’s function for a body of revolution. Glisson and But-
ler applied the MM/Green’s function technique, with
numerical Green’s function, to the problem of a wire (Scat-
terer 1) in the presence of a body of revolution (Scatterer
2). The concept of a numerical Green’s function is similar
to Harker’s {68 matrix partitioning method and to the matrix
Green’s function discussed in the next section.

There are several hybrid techniques, related to the MM/
Green’s function technique, which will not be treated in
this paper. In particular, we mention the so-called GTD/MM
technique which uses the MM to numerically evaluate an
unknown diffraction coefficient [69]-[71]. Thiele et al. have
developed a hybrid theory of diffraction (HTD) which uses
a high-frequency approximation for the current on a por-
tion of the body and the MM on the remainder [72], {73]. In
a related technique, Mitschang and Wang incorporate the
high-frequency currents into the MM solution for scatter-
ing by a body of revolution [74]. Azarbar and Shafai [75] effi-
ciently analyzed large reflector antennas by employing an
MM solution which solved for the difference between the
actual and the physical optics currents on the surface of the
reflector. Finally, Richmond [76] has developed a physical
basis technique foran MM solution of awide dielectric strip
which involves only three basis functions.

Section 1l of this paper presents the basic formalism for
a standard MM solution and an MM/Green’s function solu-
tion. The two methods are compared and the concept of
of amatrix Green’s function is introduced. Section Ill solves
the example problem of TM scattering by a perfectly con-
ducting semicircular strip in the presence of a perfectly
conducting circular cylinder by a standard MM solution,
and by the MM/Green'’s function method using a matrix,
exact eigenfunction, and GTD Green’s function. Section IV
briefly summarizes the main points of this paper.

I, MM aNnD MM/GRrEEN's FUNCTION FORMULATIONS
A. Problem Geometry

This section wili outline the MM and MM/Green’s func-
tion solution for the scattering by two perfectly conducting
scatterers. The basic geometry is shown in Fig. 1{a). Here
we have the impressed currents, (ff, M'), radiating in the
presence of two perfectly conducting obstacles, termed
Scatterers 1 and 2, and producing the total fields (E, H). In
free-space the impressed currents radiate the incident fields
(E”, H®). Scatterer 1is enclosed by the surface S; which has
outward unit normal 7A,, and similar definitions apply to
Scatterer 2. The ambient medium is free-space with perme-
abifity and permittivity (u,, €,). All fields and currents are
time harmonic, with the e™' time dependence suppressed.
Here w = 27 fis the radian frequency, A denotes the free-
space wavelength, and k = 2x/\. For simplicity, we present
the MM and MM/Green’s function solution for perfectly
conducting obstacies, and unless specifically noted, all
general remarks apply equally well to problems involving
penetrable scatterers.

The MM and MM/Green’s function solutions can be nota-
tionally complex, involving many quantities, some of which
differ only slightly in their meaning. To minimize confu-
sions we introduce a notation based upon subscripts and
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Fig. 1. (a) In the original problem the impressed currents
radiate in the presence of two perfectly conducting scat-
terers. (b) In the standard MM solution, both scatterers are
replaced by free-space and equivalent currents. (¢) In the
MM/Green’s function solution, only Scatterer 1 is replaced
by free-space and equivalent currents.

superscripts. For example, we use the notation of the super-
scripts %, or *2, to indicate a quantity computed from the
fields of acurrentin free-space, in the presence of Scatterer
2, or the fields scattered from Scatterer 2,respectively. The
subscripts ; or , will be used to denote a quantity associated
with Scatterers 1 or 2, respectively. The integer subscripts
m and , are used to refer to MM basis function numbers,
while the integer subscript , refers to term p in acylindrical
eigenfunction expansion. Finally, the superscript ' denotes
a quantity associated with the impressed currents. This
notation is summarized in Table 1.

Table 1 Summary of Superscript and Subscript Notation

Notation Implies a Quantity Associated with . ..

Superscript 0
Superscript 2

the free-space fields of a current

the fieids in the presence of Scatterer 2
Superscript $2 the fields scattered from Scatterer 2
Subscript 1 Scatterer 1 or the N, modes on Scatterer 1
Subsript 2 Scatterer 2 or the N, modes on Scatterer 2
Superscript i the impressed currents (J', M')

Subscript m or n MM modes mor n

Subscript p cylindrical eigenfunction term p

B. MM Solution

As illustrated in Fig. 1(b), the first step in the standard MM
solution is to replace all matter, i.e., Scatterers 1 and 2, by
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free-space and by the equivalent electric surface current
density J where

=, xH ons§,
/= (1)
’1 = ﬁ2 X H on Sz.

Note that Jis unknown since H is unknown, however, J will
be found in the MM solution. By definition, the scattered
fields are the difference between the total fields and the
incident fields. In the equivalent problem of Fig. 1(b), the
scattered fields are the free-space fields of J, denoted (E%(}),
HO(J)). In this case, the total fields are

E=F"+ E%)) 2
H = H® + HY)). (3)

Note that we use the notation of superscript  to imply the
free-space fields of a current distribution.

An electric field integral equation (EFIE) for f is obtained
by enforcing the boundary condition that the total electric
field tangential to S, and S, must vanish on the surfaces S,
and $,. Then from (2)

—E%)) = E® tangential components on S;and S,.  (4)

Equation (4) is an integral equation for J since

E%p = H ] G ds’ (5)

51+ 5

where G%is the dyadic free-space Green's function [4]. Basi-
cally G%s a 3 x 3 matrix which gives the free-space vector
electric field of an arbitrarily oriented infinitesimal electric
current element. For example, in the rectangular coordi-
nate system, the i, j element of G° is the x, y, or 2 polar-
ization (forj = 1, 2, 3) of the free-space electric field due to
an infinitesimal electric current element with dipole ori-
entation %, y, or 2 (fori =1, 2, 3).

Equation (4) must now be solved for J. The first step is to
expand Jin terms of an appropriate set of expansion, basis,
or interpolating functions. Thus we write

N
J= 2 Iy (6)

where the J, are a setof N known linearly independent basis
functions defined on S, and S,, and the /, are a set of N
unknown coefficients (n = 1,2, - - -, N). Denoting E%J,) as
the free-space electric field of J,, and substituting (6) into
(4) yields

N
- 2 LEU) = £
tangential components on S, and S,. 7)

Now define a set of N linearly independent vector weight-
ing functions, w,(m = 1,2, - - -, N), on and tangential to
the surfaces S, and S,. If in (6) the first N, expansion func-
tions are on S, and the last N, are on S, (N = N, + N;), then
the first Ny, weighting functions are on 5, and the last N; are
on S,. Taking the inner product of both sides of (7) with each
of the N weighting functions converts (7) into an N X N
system of simultaneous linear algebraic equations which
can be written in matrix form as

Z9u = (v4 ®)

where [Z%is the N x N impedance matrix, [V is the length
N right-hand-side or voltage vector, and (/] is the length N
solution or current vector which contains the N = N, + N,
coefficients in the original expansion for the current in (6).
Typical elements of [Z% and [V°] are given by

Zon = -SSE"(I,.) " W ds
-_—-gg[ggl,,-(_i"ds']-wmds 9)
Ve = HE“’ - Wy ds. (10)

m

As indicated in (9) and (10) the ds integrals are over the sur-
face of the mth weighting function, while the ds’ integrals
are over the surface of the nth expansion function.
Assuming N, basis functions are employed on Scatterer
1, and N, basis functions on Scatterer 2, Fig. 2 shows the
matrix equation (8) partitioned into blocks, corresponding
to the basis functions on Scatterers 1and 2. Here [Z%] is the

f— N — Nz—'j
o 13
]
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L | e
1HiE N
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Fig. 2. Thestandard MM matrix equation is partitioned into
blocks related to basis functions on Scatterers 1 and 2.

z
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Ny x N; block of [Z%] which represents coupling between
basis functions on Scatterer 1, (Z%,] is the N, x N, block of
[Z% which represents coupling between basis functions on
Scatterer 1and basis functions on Scatterer 2, [1,] is the first
N, elements of [/] containing the coefficients of the expan-
sion functions on Scatterer 1, etc. Note that [Z%,] and [Z%,]
are the MM impedance matrices for isolated Scatterer 1 or
Scatterer 2, respectively, in free-space. Similarly, {V9] and
[V are the voltage vectors for isolated Scatterer 1 or Scat-
terer 2, respectively, in free-space. As shown in Table 1, the
notation being used is that the subscript ; indicates a quan-
tity associated with the first N, basis functions on Scatterer
1, while the subscript ; indicates a quantity associated with
the N, basis functions on Scatterer 2.

Using standard techniqucs of matrix algebra, (8) can now
be solved for the current vector (/] which when substituted
into (6) provides an approximation to the current on the
scatterers. In principle, as Nis increased, a well-formulated
MM solution approaches the exact solution. For problems
which are formulated in terms of an unknown surface cur-
rent density, the number of unknowns, N, which must be
retained in the MM solution is proportional to the electrical
surface area (5, + S/ A%, with values from 24 to 100 basis
functions per A being typical.
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The CPU time necessary to compute [2% is proportional
to N2 The CPU time to solve (8) tends to be proportional
to N2 for small to modest N, but to N> for large N. Thus, if
N is not too large, the computer CPU time and storage
requirements needed to carry out the MM solution vary
roughly as N2 or as f*. As the frequency is increased N must
be increased, and at some point the computer resources
needed to solve the problem become prohibitive. For this
reason, MM solutions are often referred to as low-fre-
quency solutions, applicable to bodies which are not too
large in terms of a wavelength.

C. MM/GCreen’s Function Solution

The fundamental difference between the MM and MM/
Green’s function solutions is that in the MM/Green’s func-
tion solution some, but not all, of the matter is replaced by
free-space and equivalent currents. In the equivalent prob-
lem of Fig. 1(c), Scatterer 1, but not Scatterer 2, is replaced
by free-space and equivalent currents. Then, in contrast to
(1), the equivalent currents for the MM/Green’s function
solution are

} =) = fi; x Hon S, only. (1)

In Fig. 1(c), the total fields are the superposition of the fields
of the impressed currents and J,, both radiating in the pres-
ence of Scatterer 2. Then denoting (€2, H'?) and (E%(},),
H(J,) as the fields of the impressed currents and J,, respec-
tively, radiating in the presence of Scatterer 2, the total fields
are

E = F? + EYJ,) (12)
H = H® + HY}). (13)

As indicated in Table 1, the notation of superscript 2 implies
the fields of a current distribution in the presence of Scat-
terer 2. Inherent in the MM/ Sreen'’s function formulation
is that we know (to an acceptable accuracy) the Green's
function for Scatterer 2. That is, we know the near zone fields
of a current element in the vicinity of Scatterer 2.

The EFIE is obtained by enforcing the boundary condition
that the total electric field tangential to $; must vanish on
the surface S,. Then from (12)

~E%(J,) = F’* tangential components on S, only.  (14)

Note that it is not necessary to explicitly satisfy the bound-
ary conditions on Scatterer 2, since it is implicit in (14) that
all sources radiate in the presence of Scatterer 2, and by
definition these fields satisfy the boundary conditions on
Scatterer 2. Equation (14) is an integral equation for J, since

EXJ) = gg 5 - Glds’ (15)
S
where G is the dyadic Green'’s function for Scatterer 2. G*
is similar to G®in (5), except the electric current element is
radiating in the presence of Scatterer 2.

Equation (14) must now be solved for J,. We begin by
expanding J, as

Ny
h= Z I (16)

This expansion is identical to that in (6), except that we
include only the first N, basis functions on Scatterer 1. Sub-
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stituting (16) into (14) yields
ANy

- X 1EX)) = E?

tangential components on S, only an

where E%(J,) is the electric field of J,, located on S,, and
radiating in the presence of Scatterer 2. Taking the inner
product of (17) with a set of N, weighting functions located
on S, reduces (17) to the matrix equation

(221 = v3 (18)

where [Z?]is the N, x N, impedance matrix, [/,] is the length
N, current vector containing the unknown coefficients in
the expansion for J,, and [V?] is the N, element voltage vec-
tor. Typical terms of [Z?] and [V?] are given by

Z:, = —SS EYJ,) - wp ds
=—S§[SSI,,-E’ds']'wmds (19)
VZ = H E? - w,, ds. (20

m

The above expressions for the elements in the MM/Green'’s
function matrix equation are identical to those for the stan-
dard MM solution (9), (10), except that we replace the free-
space fields with the fields in the presence of Scatterer 2

Equation (18) can now be solved for [/,], which when sub-
stituted into (16) provides an approximation to the current
on Scatterer 1. The total fields are then found using (12) and
(13).

The fields of any current distribution in the presence of
Scatterer 2 can always be written as the sum of the free-space
fields of the current plus a correction term, corresponding
to the fields scattered from Scatterer 2. Thus we can write

G'=C°+G*®
EXJ) = E%J,) + ES%(J,)
Eiz = El'ﬂ + EiSl (21)

where the superscript 2 implies the fields scattered from
Scatterer 2. Using this notation, (18) can split into its free-
space and scattered components as

(Z%1 + 1Z°2h] = v + (V5] 22)

where the [Z%,] and [VY] are the Scatterer 1 matrix elements
in the absence of Scatterer 2 as defined by (9), (10), and Fig.
2. [Z%Y and [V5?] are perturbation terms which account for
the fields scattered from Scatterer 2, and are given by (19),
(20), with the superscript ? replaced by 52

In some cases, it is advantageous to split the impedance
matrix into its free-space and scattered components, as
shownin(22). Thisis aresultof the fact that itis almost always
easier and faster to accurately find the elements of (Z),] than
those of [Z*J or [Z°%]. In many problems the free-space com-
ponents will be much larger than the scattered compo-
nents. Inthis case, it is computationally efficient to first eval-
vate the elements of [Z,] with high accuracy and relatively
little CPU time, and then expend as much CPU time as is
reasonable to evaluate the elements of [Z37]. If, for example,
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a typical element of [Z**] is about 10 percent as large as the
corresponding element in [2Y},], then a 10-percent error in
evaluating that element in (Z*?] will result in only about a
1-percent error in the corresponding element in [Z]. Thus
one can save considerable CPU time by requiring only mod-
est accuracy in the computation of those elements of (Z°].
The split shown in (22) is especially advantageous when
treating the singularity in the self-impedance ti.e., m = n)
terms, or other terms where the expansion and weighting
functions physically overlap. Since this singularity is entirely
in{Z%], the splitin (22) allows one to analyze the singularity
with the relatively simple free-space Green’s function, and
not the more complex Scatterer 2 Green's function. An
exception would be if Scatterers 1and 2 touch at an edge,
orcornerof Scatterer 2, inwhich case G ** would be singutar
at the attachment line or point, respectively. Treatment of
this singularity in G*?is highly problem dependent, and is
beyond the scope of this tutorial paper. The split shown in
(22) 15 also natural for the MM/GTD method where the ray
picture of the Scatterer 2 Green's function expresses the
tields as the sum of an incident ray plus several scattered
or diffracted rays. A further practical advantage of the split
in 22} 1s that computer programs for the evaluation ot
[Z7 ] and |V may already be available. We caution that there
are instances where certain elements of [ZY)] are almost the
negative of the corresponding elements of [2°], making
the sphit in (22) a numerically unstable method of com-
puting [Z°){52], {77].

D. A Comparison Between the MM and MM/Green's
Function Solutions

First consider the basic accuracy of the MM and MM/
Green'stunction solutions. The basic integral equations on
which the MM and MM/CGreen’s function solutions are
based are both exact., It both methods use the same Ny
expansion and weighting tunctions on Scatterer 1, and the
exact Green's tunction s used inthe MM/Green's function
solution, thenin the imitas Nyand N, + oo, both solutions
should i prinaiple yield the exact result. For the ¢ se of
tinite Ny, but in the himit as N, oo, both solutions should
produce the same approximate result. in particular, the N,
elements of [1]in (18) should be wdentical to the irst N ele-
ments ot [/]in 8). However, in practice Ny and N, will both
be finite, and the two solutions will yield somewhat dit-
terent results. The most accurate method 1s the one with
the most accurate model ot Scatterer 2. The MM solution
emplovs an MM model of Scatterer 2, while the MMIGreen’s
tunction method employs the Scatterer 2 Green's function,
I the exact Scatterer 2 Green's tunction s used (and we
assume that it can be evaluated exactly), then the MM/
Green's funchon soluhion will be the most accurate. How-
ever, it an approximate Green's function s used, then the
MM/Green’s tunction solution may not be as accurate as
the MM solution. In this case, the relative accurdey will
depend upon the accuracy of the approximate Scatterer 2
Green's tunction and on the number of basts tunctions N,
used i the MM model of Scatterer 2.

Next consider the CPU time and storage for the MM and
MM/Green's fundion solutions. The MM solution for the
current on Scatterers 1.and 2 involves an order N Ny
N, matrix equation, while the MM/Green's function solu-

non involves an order N N, matnix cquation. Since N-

storage locations are required for the impedance matrix (N2
+ N)/2 for a symmetric matrix), the MM/Green's function
solution requires less storage, especially if N, >> N,. By the
same argument, the matrix solution time is less for the MM/
Green’'s function solution. The CPU time to compute a sin-
gle element in an MM/Green’s function impedance matrix
generally requires more CPU time than a corresponding
element in a MM impedance matrix. This is because the
elements in the MM/Green's function impedance matrix
involves the relatively complicated Scatterer 2 Green's
function. In both cases, the total CPU time to compute or
fill the impedance matrix is proportionat to N*. However,
if N, >> Ny, then the CPU time to compute the N7 elements
in the MM/Green’s function impedance matrix will usually
be less than the CPU time to compute the (N, + N ele-
ments in the MM impedance matrix.

£, The Matnx Green’s Function

As mentioned above, the MM and MM/Green's function
solutions produce essentially the same result for [1]. 1t 1ol
lows that there must be a very close relationship between
the MM matrix equation (8) and the MM/Green’s fundtion
matrix equation (18) or (22). We will now obtain this rela-
tionship by casting (8) into an order Ny matnix equation for
1], and then comparing the result to (22).

As illustrated in Fig. 2, the MM matrix equation (8) s
equivalent to the coupled matrix equations

(Z3HY + 12500 - v (23

(Z3LHh) + 125000 (v (24
Left multiplying (24) by {7°.117%] ' yields
PAR VAR R VAN TN IR VAR T
PARIVAR I IA] (25)

It we now subtract (25) trom (23), the (L] terms cancel leaving
the order Ny matnix equation for 1]

VA I VAT [V I V481 U 21 B P [ P B L BB

After (26) has been solved tor [1], then (1] can be obtained
trom (24) as

TR VAN B 14 VAR B VARITAR 27

Comparison with (22) shows that (26) 1< 1in the torm of an
MM/Green's tunction solution, where the perturbation
terms, caused by Scatterer 2, are given hy

VAN VAT VAR BN VAN (28)
(121 (250700 V0L 129)

(7> Tand [V in (28), 29) are notidentical to those in 122),
ance different models are betng used tor Scatterer 2. In
prinaple, they will become identical it the exact Green's
function s used to compute [ fand (V10 22), and it N

» 2 basis functions are used to madel Scatterer 2.1 the
evaluaion ot (26). Yor hinite N, the corresponding elements
n these equations will be approximately the same . In either
case, (26) can be interpreted as an MM/Green's fundction
solutiontorthe currenton Scatterer 1. However, the Green's
function s in the form ot a matriy rather than a tundctional
expression. Thus, we canloosely reterto [Z5.(Z9] 17 ] as
a matnx Green's tunction for Scatterer 2, since 1t s a com-
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plete description of the scattering of electromagnetic waves
from Scatterer 2 due to the source currents modeling Scat-
terer 1. The advantage of the matrix Green'’s function is that
it can be obtained for any Scatterer 2 geometry for which
astandard MM solution for Scatterer 2in free-space is avail-
able. Employing (26), with the matrix Green’s function, is
similar to Glisson and Butler’s use of a numerical Green’s
functionto analyze awire antennain the presence of abody
of revolution (BOR) {67] and to Harker’s matrix partitioning
method (68].

The following physical interpretation can be made for the
matrix terms in (26):

+ (25011 is the electric field incident upon Scatterer 2
caused by the current on Scatterer 1radiating in free-space.

= [Z%)7 [Z51I4] s the current induced on Scatterer 2 by
the above incident field.

< 207 = 1Z%U2Z5) 1201 s the electric field inci-
dent upon Scatterer 1 caused by the above current on Scat-
terer 2 radiating in free-space, i.e., this term accounts for
the coupling between the currents on Scatterers 1 and 2.

< 1251 '[Vilis the current induced on Scatterer 2 by the
onginal incident field, (E°, H).

< V= 1ZNHZ00 VR s the electric field incident
upon Scatterer 1 caused by the above current on Scatterer
2,1e. thisterm accounts for the perturbation in the electric
field incident upon Scatterer 1 caused by the presence of
Scatterer 2.

Although the MM and MM/Green’s tunction solution with
matrix Green's function are algebraically equivalent, there
are times when the MM/matrix Green’s function sotution
can reduce the CPU time. A practical example would be a
parameter study to hind the length and location of a dipole
onan arrplane in order to obtain a prescribed input imped-
ance and/or radiatton pattern. To solve this design problem
we analyze dipoles ot vanious lengths and locations on the
airplane, until a length and location 1s found which meets
the pattern and impedance speciications. In the MM model
ot the dipole and the arrcraft, the number of unknowns
needed to modelthe airplane would far exceed that needed
tor the dipole. It we let the dipole be Scatterer 1 and the
atrplane Scatterer 2, this problem s an excelfent candidate
toran MM Green’stunchion solution since N, >> Ny Using
thay wire and surtace patch modeling techniques, a stan-
dard MM solution tor the dipole in the presence ot the air-
plane s available [78] However, this (N, + N.) basis tunc-
tion MM wolution would be time-consuming, especially
since it wauld have to be repeated 1or many dipole lengths
and locations. The MM Green's tunction solution, with
matrix Green's tunction, can dramatically reduce the CPU
time tor the secand and subsequent runs i the parameter
study by the tollowing tour step procedure:

h Begin by computing {7,], the MM aimpedance matrix
tor the arrplane 10 tree space. Then compute [Z9,] ' (and
storetan the locations onginally used tor [2°0,)). for large
N this can be a very ime-consuming process. However,
s only done once, and the remainder ot the computation
ts much taster.

2 Next a dipole locatnon and length s chosen and the
matnces (27501754 and (7] are computed. The CPU time
to compute these three matrices will be much less than that
1o compute [0, since N o N, The vedtors [V and
IV are also computed.

b Fquation 26)1s sotved for {1, which then is inserted

into (27) to find [/,]. These operations are relatively fast, as
compared to computing and inverting [Z9)), since they
involve only matrix multiplications and the solution of an
order N, matrix equation.

4) With the current on the dipole and airplane known,
the computation of the dipole input impedance and far-
zone radiation patterns is straightforward and fast. If the
pattern and input impedance meet specifications, then
stop; if not, go back to step 2.

The advantage of the above procedure 1s that the most
time-consuming part, i.e., the computation and inversion
of [Z9,], is done only once, regardless of the number of
dipole lengths and locations which are analyzed. Steps 2-
4 may be fast enough to be done interactively.

As an aside, if the dipole was a monopole which con-
tacted the aircraft, then the MM model for the monopole
on the aircraft would contain an attachment mode at the
wire to surface junction point [78], [79]. This attachment
mode is used to enforce continuity of current at the wire/
surface junction and involves currents on the wire and on
the aircraft surface. In the MM/matrix Green’s function
solution, the attachment mode should be considered as part
of the wire or Scatterer 1.

IH. MM anD MM/GREEN'S FUNCTION ExAaMPiES

This section presents MM and MM/Green's function
solutions to the two-dimensional problem of TM scattering
by a perfectly conducting semicircular strip in the presence
of a perfectly conducting circular cylinder. The strip will be
Scatterer 1, and the cylinder will be Scatterer 2. As illus-
trated in Fig. 3, the cylinder has radius a, and the strip is at
radius b and extends over the angular range -¢, < ¢ < ¢..

)
Em - ;elll
Q—-_4->—
‘\\\
CIRCULAR STRIF
_¢.

CIRCULAR CYLINDER

Fig. 3. Geometry 1or a TM plane wave inadent upon a per
fectly conducting sermicircular stripan the presence ot a per-
tectly conducting aircular cyhinder

The incident tield is the plane wave
E? - det (30)

incident from the + xaxis. For this problem, all electric fields
and currents will be 2 polarized. Thus tor simphicity, in this
section we will drop the vector notation, and the 2 com-
ponent s understood The solution to this problem is pre-
sented using:

1) a straight MM solution,

2) an MM/Green’s tunction solution with a matrnix
Green’s function,

3 an MMI/Green's function solution with an exact
Green’s function,

4) an MM/Green’s functhion solution with a GID (geo-
metrical optics) Green's function,
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All computer CPU times are for the VAX 8550, which is
about five times faster than a VAX 11/780. Also, by CPU time
itis meant total CPU time, i.e., matrix fill and solution time.
Although the matrices for this simple exampie have the Toe-
plitz property, we did not use this property in our solution
so that the CPU times would be more typical of most prob-
lems which do not have Toeplitz matrices.

A. MM and MM/Matrix Green's Function Solution

The MM solution for TM scattering by a perfectly con-
ducting cylinder of arbitrary cross section is well known [1],
and the particular solution employed here is based upon
that of Wang [80]. As illustrated in Fig. 4, to implement the
MM solution, we make a piecewise straight approximation
to the circular cylinder and strip. To obtain reasonable

STRIP MODELED AS

N, STRAIGHT SEG.\

CYLINDER MODELED AS N,
SIDED REGULAR POLYGON

Fig. 4. For the MM solution, a piecewise linear approxi-
mation is made to the strip and cylinder contour in Fig. 3.

results, the width of the straight segments should not
exceed N/4, with A/10 being typical. If we denote the strip
as Scatterer 1 and the cylinder as Scatterer 2, the strip is
modeled as N, straight segments of equal length and the
circular cylinder is modeled by an N,-sided regular poly-
gon. Referring to (6), the expansion functions are the piece-
wise constant or pulse functions

/. = 1d,, n=12- --,N=N +N, (31

which are numbered so that the first N, are on the strip
(Scatterer 1) and the last N, are on the cylinder (Scatterer
2). The width of basis function n is denoted d,,. The weight-
ing functions are chosen identical to the expression func-
nons, 1.e., w,, = /.. This is referred to as a Galerkin solution,
and results in a symmetric impedance matrix. The MM
matrix equation, given by (8)-(10) and illustrated in Fig. 2,
can then be evaluated using computer subroutines sup-
plied by Wang [80].

Consider the spedific example of a circular cylinder of
radius a = \, and a strip with radius b = 1.01\ and angular
sector 20, = 107, The radius b is chosen slightly larger than
4 to emphasize the coupling between the strip and the cyl-
inder. For this geometry, Fig. 5 shows the magnitude and
phase of the current density at the center of the strip versus
N, = the number of basis functions used to model the cyl-

STRIP REP, BY

5‘ 4

E .N.lS SEG

.:_D m 5/‘__—3“_ —2 O”u
g

CYL. REP. 8Y Ny
SEG. POLYGON

[/}
1T 1T 7T

gl
] 1 ) i R T L i —4
(o] 25 30 5 100 128 150 5 200
N2

Fig. 5. The MM or MM/matrix Green'’s function solution for
the center current of a circular strip in the presence of a cir-
cular cylinder versus N, = the number of basis functions on
the cylinder.

inder. Numerical experimentation showed that N, = 3 basis
functions on the strip results in a reasonably well con-
verged result, and this will be used in all computations to
follow. As is typical of MM solutions, as N, increases, the
strip center current density converges, in this case to about
5.45 at an angle of —2.8° mA/m. About N, = 100 basis func-
tions are needed on the cylinder to obtain areasonably con-
verged result, which corresponds to a segment size of about
0.063\. The computer CPU times for the MM solutions in
Fig. 5 are shown by the solid line in Fig. 6. The CPU time

50 2.5
40— 2 03

/ 2

MM/ MATRIX GR F / 3]

% L w
- 30 )
5 .
a 2z
S &
3 &
20 x
[~ z

<

X

S

x

X

[o] S0 100 150 200
N2

Fig. 6. The CPU time on a VAX 8550 for the MM and MM/
matrix Green'’s function solution to the geometry of Fig. 5.

is roughly proportional to (N,)?, and about 10's were required
for the N, = 100 basis function solution.

The MM/matrix Green’. function solution, defined by (26),
is algebraically equivalent to the straight MM solution. Thus
the data in Fig. 5 also applies to the MM/matrix Green'’s
function solution. The corresponding CPU times for the
MM/matrix Green’s function solution are shown by the
dashed line in Fig. 6, and are considerably less than that for
the straight MM solution. [t is important to point out that
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these times do not include the time to compute and invert
(Z3,]. If a series of problems is being run using the MM/
matrix Green’s function formulation, with the cylinder fixed
but with the strip geometry being varied, these CPU times
would be for the second and subsequent runs. Also, if a
large number of runs is being made, then these times rep-
resentthe average CPU time for each run (including the first
run where [Z9)] is computed and inverted).

B. MM/Exact Green’s Function Solution

This section describes the MM/Green’s function solution
to the problem of Fig. 3 using the exact eigenfunction cyl-
inder Green’s function. We begin by presenting the exact
eigenfunction representation of the cylinder Green’s func-
tion. Consider a unit amplitude line current located at the
source point with cylindrical coordinates (p’, ¢) and radiat-
ing in the presence of a perfectly conducting circular cyl-
inder of radius awhichis! . ated concentric with the z axis.
The total field of this line source at the field point (p, ¢), i.e.,
the cylinder Green's function, is given by [7]

Gip, 90, 0') =C EO epFolp, p') cOs plé — ¢} (32)
P

in which C = —k%4weg, ¢, = 1ifp =0ande, = 2if p # 0,
and

Folo, p°) = HZ (kp ) [Bplko ) + c,H (ko )]
=F _ylp, p") (33)
B (ka)
Cp = _H‘pz’(ka) =C, (34)
p. = the minimum of (p, p’')
p> = the maximum of (p, p"). (35)

Here B, denotes the Bessel function of the first kind and
H denotes the Hankel function of the second kind, both
of order p.

If the same cylinder is illuminated by a unit amplitude
plane wave incident from the +x axis (30), then the total
field at (p, @) is

£ = 2 Dyole (36)
p= -®

in which
Dplp) = (=) P(B,lkp) + c,HY (kp)). 37

While in the MM solution it was convenient to make a
piecewise linear approximation to the curved cylinder and
strip, when using the above eigenfunction expansion of the
fields, it is advantageous to retain the true circular nature
of the strip. Thus in Fig. 7 the semicircular strip is shown
segmented into N; smaller semicircular strips. Each of the
Ny smaller strips corresponds to a piecewise constant basis
function. The current density on expansion function n is
given by

1

I = b(d., ~ ¢,)

Ot < O < D (38)
Again we choose the weighting functions identical to the

expansion functions, i.e, w,, = /..
We now show in some detail the evaluation of the ele-
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STRIP SEG. INTO
N, MODES

]
Wi e

CYLINDER

Fig. 7. For the MM/exact Green’s function solution the
semicircular strip is segmented into N, smaller semicircular
strips corresponding to the MM basis functions.

ments in the MM/Green’s function impedance matrix.
Referring to (19), a typical element in our case is given by

2
zmn

om2
—g EZ(In) Imb d¢ = Zflm

dm1
mn=12,---,N,. (39)

Here EZ(],,) is the electric field cf expansion function n,
located on the semicircular strip, and radiating in the pres-
ence of the circular cylinder. £2(/,) is computed by inte-
grating over expansion function n the product of /, and the
cylinder Green's function

@na2

EYJ,) = 5@ Jo(®") GUb, ¢; b, ¢')b do’ (40)

in which we have set p = p’ = b since in our case the source
and field point are on the strip. Recognizing that J,(¢') is
constant for ¢,1 <= ¢ < ¢, and inserting GZfrom (32) into
(40) yields

én2

E¥J) = Cl.b '20 epF b, b) S cos pl¢ — ¢') d¢’.  (41)
p= én1
Equation (41) can now be easily integrated to yield

EXJ)) = Clob 2 €,Fy(b, b)
p=0

1
F—)[sin PO — &,) —sinpled —d,)], p#0

(®n2 — Dna), p=0.
(42)

Zn is Now obtained by inserting £%(J,) from (42) into (39).
Again the integrations are easily done yielding

Zl, = —Cln)ob? Z € Fo (b, b)
p=0 P'P

1
p? [cos pldm = @n1} — €COS Pldmz = Sp1)

— €COS P(®m1 — bny) + COS Pldmy; ~ Gp)),

p#0

@m — 60 (@m1 — b2, p =0 (43)
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Similarly, from (20), the elements in the voltage vector are

om;
szn= s Elzmbd¢; m=1121-.'1N|' (44)

om

Inserting E'? from (36) into (44) and integrating yields

Vi = b 2 Dyb)
p-‘-'m

i (e Pomr @ '/Pﬁm')l p* 0
(45)
(@m2 — Sm1), p=0.

The ability to carry out the integrations in closed form for
the elements in the impedance matrix and the right-hand-
side vector is typical for problems where the surface of Scat-
terer 1 is a constant coordinate surface for the functions
being used to expand the Scatterer 2 Green’s function [21],
{23], {54}, (87].

Although (43) for the Z1, is in a relatively simple form,
anumerical problem arises in that the self-impedance terms
(i.e., m = n)are slowly convergent. Referring to (22), itis the
[Z5,} or free-space part of [Z?] which is slowly convergent
when basis functions m and n are electrically close. For this
reason, itis numerically efficient to evaluate [Z9,] separately
as in a conventional MM solution for the strip in free-space
(1], [80]. The problem then remains to evaluate [Z5%] using
the eigenfunction expansion of {43). F,in (33) and D, in (37)
both contain a factor of the form [B, + cPHg’]. The term pro-
portional to B, corresponds to the free-space field, while
the term proportional to ¢, H; corresponds to the scat-
tered field. Thus referring to (22), the B, term contributes
solely to (Z%,] and V], while the c,H{’ term contributes
solely to[Z*?land [V*4]. It can then be seen that (43) and (45)
can be used to compute [Z*?] and [V*?], respectively, by
omitting the B, term.

For the problem illustrated in Fig. 5, the N, = 3 basis func-
tion MM/exact Green's function solution yielde< a current
density at the center of the strip of 5.9 at an angle of —2.7°
mA/m, which is very close to the MM solution for N, 2 100.
This MM/Green’s function solution required only three
unknowns and 0.11 s of CPU time. As compared to the N,
= 3 and N, = 100 basis function MM solution, this is about
a factor of 100 reduction in CPU time and 1000 reduction
in matrix storage requirements. As the cylinder size
increases, the relative advantage of the MM/Green's func-
tion solution will also increase. Although the reduction in
storage is a general characteristic of MM and MM/Green’s
function solutions, the reduction of CPU time is not. The
fact that we could carry out the integrations in (39} and (44)
in closed form greatly reduced the CPU time for the MM/
Green's function solution. For most MM/Green'’s function
solutions these integrations must be done numerically and
can be very time-consuming. In some cases, the CPU time
for the MM/Green’s function solution can actually exceed
that of the straight MM solution.

C. MM/GTD Green’s Function Solution

Using the GTD to obtain the Green’s function greatly
expands the range of problems which can be treated via
MM/Green’s function techniques. This section describes

the solution to the problem of Fig. 3 using the MM/Green'’s
function technique with a GTD Green'’s function.

The GTD Green’s function is described with the aid of Fig.
8, which shows a unit amplitude line source located at (p’,
¢’) and radiating in the presence of a perfectly conducting
cylinder of radius a. In describing the field of the line source

(' ¢
SOURCE PT.

"°°"'\

3 o—DIRECT RAY

FIELD PT.
REFLECTED (p.9)
RAY Pe

Fig. 8. Thedirectandreflected raysused inthe GTD Green's
function for a line source in the presence of a circular cyl-
inder.

it is assumed that the field point (p, ¢) is in the lit region,
i.e.,aline or ray from the source point to the field point does
not pass through the cylinder. it is also assumed that ka
>> 1 and that the source and field point are not too near
the surface of the cylinder. In the lit region the total field
is dominated by two rays, shown in Fig. 8 as the direct ray
and the reflected ray. The field of the direct ray is simply
the free-space field of the line source. The reflected ray
propagates along a straight-line path of length s’ from the
source point to the point Q on the cylinder, and then along
astraight-line path of length s from Q to the field point. The
point Qs defined by the requirement that the angle of inci-
dence o' is equal to the angle of reflection, a. Then, using
the notation of (21), the total field of the line source is [82)

G2 =G + G° = CHP(kd)

!

o
p'+$

- CHP (ks") e Ik (46)

where d is the distance from the source point to the field
point, C = —k*4we,, and

2
« Cos a

1.1, (47)
o s

Similariy, the field of the plane wave of (30} in the presence
of the cylinder can be written as

Evl - E:ﬂ + E152 = e[kx

’

- et [P et (48)
[4 s

where p" and x,,, the x coordinate of point Q, are evaluated
for a source point at (p° = o, ¢’ = 0).

Referring to (22), the first term in (46) and (48) contribute
to 129, and [VY], respectively, i.e., they result in the MM
matrix elements for the strip in free-space. As described
above, they are evaluated using computer subroutines
developed by Wang [80]. The second term in (46) and (48)
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contribute to [Z*? and {V*?], respectively. These elements
are evaluated by inserting G*Z from (46} into (39) and (40},
inserting £52 from (48) into (44), and performing the inte-
grations numerically. For this simple example, requiring
only one ray, these integrations are very fast. However, for
amore complicated Scatterer 2 geometry, more rays would
be required, and the CPU time needed for the numerical
integrations would increase.

The insert in Fig. 9 shows a semicircular strip located
A/2 above a circular cylinder. With N, = 3 basis functions

10
[
"OF b-a+As2
E | avgp o015
~ S
t N3 Nz =100a/X
=
=
olf
1 &,
0.01 PPN | aa s il NN |
0.1 1.0 10 100

a/ X

Fig. 9. The magnitude of the center current for a semicir-
cular strip located M2 above a circular cylinder, computed
by the MM, the MM/exact Green’s function, or the MM/GTD
Green’s function methods.

on the strip, Fig. 9 shows the magnitude of the current den-
sity at the center of the strip versus a/A. The angular sector
of the strip is adjusted so that its width remains constant
at 2b¢, = 0.15\. This data was generated with the MM, the
MM/exact Green’s function and the MM/GTD Green’s func-
tion techniques, and essentially the same results for the strip
current were obtained by each method. For the MM solu-
tion, N, = 100a/A hasis functions were used on the cylin-
der. The strip current in Fig. 9 goes to zero as a/ A — o since
the direct ray cancels the reflected ray on the strip, causing
Vil = ~[(V°*] and thus [V?] ~ 0. The CPU times for these
three methods are shown in Fig. 10. Note that the left scale
apphes for the MM solution, and is 100 times as large as the
right scale which is for the MM/Green’s function solutions.
Fora/\ > 1, the CPU time for the MM solution is two orders
of magnitude or more greater than that for the MM/Green's
tunction solutions. The CPU time tor the MM/exact Green's
function solution increases as a/\ increases, since more
term- must be retained in the eigenfunction summations.
By comparison, for a/A > 1, the CPU time for the MM/GTD
Green’s function solution is essentially constant at 0.25 s.

As compared with the MM/exact Green's tunction solu-
tion, the advantage of the MM/GTD solution is that it is
applicable to afar wider class of Scatterer 2 (in this example,
cyhnder) geometries. As compared to the MM, the advan-
tage of the MM/GTD solution is that it is much faster and
requires far less computer storage as the electrical size of
Scatterer 2 increases.
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Fig. 10. The CPU times on a VAX 8550 for the data in Fig.
9 computed by the MM (dashed curve) and by the MM/
Green’s function methods (solid curves).

V. SUMMARY

This paper describes a technique for combining the MM
and Green’s function solutions in electromagnetics. The
fundamental difference between the standard MM and MM/
Green's function solutionsis in the application of the equiv-
alence theorems used in obtaining their respective integral
equations. In a standard MM solution all matter is replaced
by free-space and by equivalent currents. These currents
are then found as the solution of an exact integral equation
whose kernel contains the free-space Green's function. By
comparison, inan MM/Green’s function solution some, but
not all, matter is replaced by free-space and by equivalent
currents. Again the currents are found as the solution of an
exact integral equation, but now the kernel contains the
Green’s function for that portion of the matter which was
not replaced by free-space and equivalent currents. Both
integral equations are solved by transforming them into a
system of simultaneous linear equations, i.e., amatrix equa-
tion. The advantage of the MM/Green's function technique
is that the number of unknowns, and thus the order of this
matrix equation is reduced. This results in a reduction in
computer storage and, in most cases, CPU time.

The number of problems which can be solved by MM/
Green’s function techniques can be tremendously
increased by not requiring the Green’s functions tobe exact.
in particular, using the GTD one can obtain the Green’s
function for a geometry as complicated as an aircraft. This
is referred to as an MM/GTD solution {55].

It is shown that, by manipulating the MM matrix equa-
tion, a standard MM solution can be put into the format of
an MM/Green’s function solution. This is referred to as an
MM/matrix Green’s function soltution. Such a solution is
algebraically equivalent to the standard MM solution, and
can be obtained for any geometry for which a standard MM
solution is possible. The advantage of the MM/matrix
Green'’s function solution is that it is faster than a standard
MM solution if a series of problems is being analyzed in
which only a small portion of the problem geometry
changes from one run to the next.

In order to illustrate the MM/Green’s function method,
and to compare it to a standard MM solution, the problem
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of plane wave scattering by a perfectly conducting semi-
circular strip in the presence of a perfectly conducting cir-
cular cylinder is solved using the MM and the MM/Green's
function technique with a matrix, an exact eigenfunction,
and aGTD Green’s function. Basically, all methods yield the
same numerical results. However, the MM/Green'’s func-
tion solutions are substantially faster, and require far less
storage (except for the matrix Green'’s function), especially
as the cylinder size is increased.
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TM Scattering by an Impedance Sheet Extension of
a Parabolic Cylinder

EDWARD H. NEWMAN. senior MEMBER. IEEE, asp JOHN L. BLANCHARD

thstract—An integral equation and method of moments (MM)
solution is presented for the two-dimensional (21)) problem of the
transverse magnetic (TM) scattering by an impedance sheet extension of a
perfectly conducting parabolic cylinder. First an integral equation is
formulated for a dielectric cylinder of general cross section in the presence
of a perfect!y conducting parabolic cylinder. Ut is shown that the solution
for a general dielectric cylinder considerably simptifies for the special case
of TM scattering by a thin multilayered dielectric strip which can be
represented as an impedance sheet. The solution is termed an MM/
Green's function solution where the unknowns in the integral equation
are the electric surface currents flowing on the impedance sheet, and the
presence of the parabolic cylinder is accounted for by including its
Green's function in the kernel of the integral equation. The MM solution
is briefly revienwed, and expressions for the elements in the matrix
equation and the scattered fields are given. Finally, sample numerical
results are presented.

[. INTRODUCTION

HIS PAPER will present an integral equation and method

of moments (MM) [1] solution to the two-dimensional
(2D) problem of transverse magnetic (TM) scattering by an
impedance sheet in the presence of a perfectly conducting
parabolic cyvlinder. Previously. the authors have presented an
MM solution for a material cylinder in the presence of a half-
plane {2]. [3]. The previous solution could be used to study
scattering by a material coated knife edge. The present
solution represents an extension or generalization of that
solution in that the parabolic cylinder can be used to model a
thick edge.

The method is based upon an MM solution of the integral
equation for the clectric surface currents representing the
impedance sheet. The solution is termed an MM/Green's
furction solution {4] since the presence of the perfectly
conducting parabolic cylinder is accounted for by including
the parabolic cylinder Green’s function in the kernel of the
integral equation. This can be compared to a conveational MM
solution where one would solve for the electric surface
currents representing the impedance sheet and the parabolic
cylinder. The advantage of the MM/Green’s function tech-
nigue is that the unknowns in the MM solution are limited to
the surface occupied by the impedance sheet and do not
exphcitly include the current distribution on the parabolic
cylinder. The disadvantage is that the evaluation of the

Manusenipt received March 18, 1987 revised September 17, 1987, This
work was supported by the Joint Service Electronics Program under Contract
NOOOTE 7R-C-0049 with The Ohio State University Rescarch Foundation.

E H Newman s with the Depantment of Electrical Engineering. The Ohio
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elements in the MM/Green's function impedance matrix and
right-hand-side vector involve the parabolic cylinder Green's
function, as opposed to the much simpler free-space Green's
function in a conventional MM solution. The MM'Green’s
function solution is especially advantageous here. since the
parabolic cylinder is one of the tew shapes for which the exact
Green's tunction is known. However, an entirely new analysis
would be required to treat the impedance sheet in the presence
of a cylinder of other than parabolic cross section.

Section I begins with a derivation of the MM/Green's
function volume integral equation for a diclectric cylinder of
general cross section in the presence of a perfectly conducting
parabolic cylinder. By a small extension of the methods of
Harrington and Mautz [S]. Senior [6]. or Andreason {7]. it is
shown that for the TM polarization a thin multilayered
dielectric slab can be represented as a sheet impedance, and
the volume integral equation reduces to a surface integral
equation. Next the MM solution for the impedance sheet in the
presence of the parabolic cylinder is presented. Finally,
numerical results are shown which illustrate the accuracy of
the method and also show sample results for the echo width
and the electric ficld on the impedance strip.

II. Tue INTEGRAL EQUATION

A. The General Dielectric Cvlinder

This section will develop an integral cquation for the 2D
scattering by a dielectric cylinder in the presence of a perfectly
conducting parabolic cylinder. We will be briet, since the
derivation exactly parallels that for a dielectric cylinder in the
presence of a half-plane {2], {3]. Fig. l(a) shows a perfectly
conducting parabolic cylinder. with its focus on the z axis. It
we denote the focal length by F, then the surface of the
parabola is given by

yi=dF(x+F). )

The parabolic cylinder coordinates (£. 3, 2) are related to the
rectangular (x, y, z) coordinates by

1 2 A
X=§(E“-n‘) y=£&n, z=2 2)
and to the (p, @, 2) circular cylindrical coordinates by

3

ti
(4]

: o , ¢
=N2pcos - =N2p sin -, e
¢ pu)sz n DS 3

In terms of the parabolic cylinder coordinates. the surface of
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Fig. 1. (a) Geometry for dielectric cylinder in presence of perfectly

conducting parabolic cylinder. (b) Dielectric cylinder is replaced by free-
space and equivalent electric volume polarization currents.

the parabola is the surface of constant 5

n=m=v2F. 4)

Confined to the region R is a dielectric cylinder with
permeability and permittivity (uo, €). The dielectric cylinder
may be lossy and inhomogeneous. The ambient medium is free
space with parameters (no, €). The impressed electric and
magnetic currents are denoted (J¢, M). All fields and currents
are two-dimensional (z independent) and time harmonic with
the e /' time dependence supressed. We will denote (ET, HT)
as the total fields of the impressed currents in the presence of
the dielectric and parabolic cylinder. In the absence of the
dielectric cylinder, but with the parabolic cylinder, the fields
of the impressed currents are (E!, HY).

In Fig. 1(b). the volume equivalence theorem [1], [9] is
used to replace the dielectric cylinder by free space and the
volume polarization currents

J=—jw(e—¢))ET &)

confined to the region R. We will let (E4, H?) denote the fields
of J radiating in the presence of the parabolic cylinder. In the
equivalent problem of Fig. 1(b), the total fields are the sum of
the fields of the impressed currents and J radiating in the
presence of the parabolic cylinder. Then using (5) we obtain

J .
-E'+——— =EfinR, 6)
—Jjw(e—€o)
which is the basic equation for J. It is an integral equation,
since E* is an integral through R of the vector dot product of J
and the parabolic cylinder dyadic Green's function.
We now restrict the excitation to be a TM plane wave. In free

space the incident electric field at (x, y) is
E%=7 exp [ —jk(x cos ¢o+ y sin ¢)) 0]

where ¢y is the angle of incidence measured counterclockwise
from the positive x axis and kK = 2x/A is the free-space
wavenumber. In this case all electric fields and electric
currents are Z polarized only, and the vector equations (5), (6)
reduce to scalar equations, applying to the Z component. For
this reason we will henceforth drop the vector notation, and it
should be understood that we are referring to the Z component
of all electric fields and electric currents.

B. The Impedance Sheet Approximation

In this section we will show that for the case of a thin
inhomogeneous dielectric slab, (6) for the volume current J
can be reduced to a simpler equation for an equivalent surface
current J;. Fig. 2 shows a thin dielectric slab of thickness T,
which, for convenience, is oriented parallel to the x axis. The
slab is shown having two layers of thickness 7| and T, and
permittivity €, and ¢,, respectively. This represents a geometry
of practical interest. For example, layer 1 might be an
extremely thin lossy material (commonly referred to as a
resistive strip [6]), while layer 2 would be the dielectric
substrate on which the resistive strip is deposited. Below we
will generalize to any e(x, y) or T(x).

To apply the sheet impedance approximation it is necessary
that the dielectric slab be sufficiently thin that the electric field
is essentially uniform in the y direction. This will be the case if

lk(|T|+|klez < ]

where k; = wvoe, is the wavenumber in region i.
Following the above procedure, the layered slab is replaced
by free-space and the equivalent volume polarization current
J. Since the total electric field is assumed to be uniform
through the thickness of the slab, it follows from (5) that
S N

=2 8
AE| AGZ ( )

where J; is the value of J in layer i and A¢; = ¢ — €).

If the dielectric slab is sufficiently thin, then the fields
radiated by the volume current J will be approximately the
same as the fields radiated by the surface current

J:=S:de=5: J, dy+g; Jy dy o)

and located at y = T/2. Using (8). this becomes

JxA‘I

_— . (10)
T\Ae, + ThAe,

J
s=-—l (T, A¢ + T1Ae) or J, =
Aﬂ

Using (10) and applying the approximation that the fields of J
are essentially the same as the fields of J; (i.e., E/ = E%)to
(6) in layer 1 results in

~E)s+ZJ,=F' (1n
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Fig. 2. Geometry for electrically thin two-layered dielectric strip.

where the sheet admittance or impedance are given by
Y, =1/Z;= — jw(TA¢, + T A¢;). (12)

Equation (12) shows that the two layers appear in parallel. For
a slab with I layers, the generalization of (12) is

!
Y;=1/Z;= —jw E T:Ae;. (13)

i=1

For a slab where ¢ is some function of x and y, and T is also a
function of x:

Y0=1/Zx)=jo | (6 )-)dy. (4

If Z, = 0, (11) is identical to that of a perfectly conducting
strip. For the special case of a homogeneous slab, (11)-(14)
reduce to the sheet impedance approximations of Harrington
and Mautz [5], the resistive strip approximation of Senior [6],
or the very thin material plate of Newman and Schrote [8].

III. MoMmeNT METHOD SOLUTION
A. The MM Matrix Equation

This section will present a pulse basis MM solution [1],
[2] of (11), using the impedance sheet approximation to a
thin dielectric slab in the presence of a perfectly conducting
parabolic cylinder. The impedance sheet will be located on the
negative x axis. As illustrated in Fig. 3, the impedance sheet is
segmented into N smaller strips of width W,,. R, will denote
the region of strip n. The strips must be small enough so that
the total electric field and Z; can be assumed to be reasonably
constant in each strip. The equivalent current can then be
approximated by

N
Js= E Iann (15)

where the /, are a sequence of N unknown coefficients, and
the J,, are the N (£ polarized) pulse basis expansion modes
defined by

g {I/W,,, within R, 16)

0, otherwise.

We employ a Galerkin [I} MM solution, with weighting
functions chosen identical to the expansion modes. In this
case, (11) reduces to the matrix equation

(Z+AZ)I=V (7

Fig. 3. Impedance strip of length L is split into N smaller strips.

where [Z + AZ] is the symmetric N X N impedance matrix,
V is the N element right-hand-side vector, and / is the N
element solution vector whose components are the unknown /,,
in (15). Typical elements in the impedance matrix are given by

Zpw=~| ElJpmdx (18)

where E7 is the total (£ component of the) electric field of J,,
radiating in the presence of the parabolic cylinder, and the
integral is over R,,. A typical element of the {AZ] matrix is
given by

Z;JsnJsn dx 19)

men

Az,,,,,=§

where the integration is over regions R,, and R,. Since we are
using the subsectional basis functions of (16), [AZ] is a
diagonal matrix whose typical element is given by

1
BZpy=— S Z,(x) dx. 20)
Note that AZ,, can be evaluated in closed form for any simple
choice of Z,(x). Typical elements of the right-hand-side vector
are

Vm=§ EiJ,, dx @

where E' is the total electric field of the TM incident wave in
the presence of the parabolic cylinder.

The numerical evaluation of the self-impedance terms in the
MM impedance matrix always presents a challenge. Accord-
ing to (18), to find Z,, we must find the electric field of J;, on
the surface of J,,. The integrand of the resulting integral will
have a singularity which must be properly treated. To treat this
problem it is convenient to write the total field radiated by J,,
in the presence of the parabolic cylinder as

ET=E4ES (22)

where E? is the free-space field of J,, and ES is the so-called
scattered field. Using the notation of (22), we can write

(Z]=[2°)+1Z%) (23)
where [Z29] is the impedance matrix for the perfectly conduct-

ing strip in free-space and [ZF] is a correction matrix which
accounts for the field which is scattered from the parabolic
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cylinder. Using this notation, (18) becomes

=70 s
Zon=2,,+2,

=~ B, ax-| ESt,ax @4)
The advantage of (24) is that the only singularities are in the
integrands of the terms of Z% for which {[m — n| =< 1.
However, since they involve the relatively simple free-space
Green’s function, they can be easily treated [10], [11]. By
contrast, the Z3 involve the far more complicated parabolic
cylinder Green's function, but contain no singularities. In a
similar manner it is advantageous to write (21) as

V= Vo4 VS

=| Eos,ax+ | ES),ax. 25)

The elements of Z% and V' are identical to the elements in
the impedance matrix and right-hand-vector for the perfectly
conducting strip in free space. Expressions and computer
codes for the evaluation of these elements are available [10].
In the next section we discuss the efficient evaluation of Z35
and V3. These both require the evaluation of fields in the
presence of a perfectly conducting parabolic cylinder. An
excellent summary of such field expressions is given by
Christiansen [12].

B. Evaluation of the Z3

Fig. 4 shows a perfectly conducting parabolic cylinder with
surface n = n,. On the negative x axis (¢ = 0) are the strip
current modes J,,, and J,,,. Zf"n from (24) can be written as

7 :_.I_S LS G3(x;, x7) dx | dx;” (26)
mn Wm " Wn R sy Nf s f

where G3(x,, x/) is the scattered electric field at (x;, y, = 0)
radiated by a unit amplitude electric line current at (x;, y, =
0). Note that by scattered field we mean the difference
between the total field radiated by the line source in the
presence of the parabolic cylinder and the free-space fields of
the tine source. The following expression for G5 can be
obtained by converting the contour integral representation of
Robin [13] to a summation using the same method as Ivanov
fre)

GYx.. x)=C Y DXO)D , ((n,0)D , i(nca)

D -
. [(_ 1),’+M] 27
D p 1(ma)
where D, is the (integer) order p parabolic cylinder function
{14). [15}. and
i

2T wey

C= -

(28)

' The substitution on {16, p. 262] should read ¢ = ((174)xY) ' Nu - (1/
axh (12,

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 36, NO. 4, APRIL 1988

nem,

Fig. 4. Modes J,, and J;, in presence of perfectly conducting parabotic

cylinder n = n,.

a=V2ke /™ 29
1> =the larger of (V —2x,, Vv —Zx})
1< = the smaller of (V -2x,, vV —2x). 30)

Recognizing that G5 is a separable function of x; and x;, the
double integral in (26) separates also, yielding (even for m =

n)
[(_ ])p+D—p-1(—ﬂla)]
D--p—l(nla)

" Am(p)A.(p) (1)

z3,=-c 3 Do)
p=0
in which

1
Ap) =5 | Dy i(V2lx]a) .

n

(32)

The evaluation of the symmetric [Z5) matrix in principal
requires (N? + N)/2 evaluations of (31). However, it is more
efficient to recognize that the Z$  are a separable function of
m and n and evaluate the entire [Z5] matrix in the course of
performing the summation. For each term p in the summation
one must numerically evaluate the N integrals A,(p), n = 1,
2, ++, N. The result is that the computer CPU time to
evaluate [Z¥] is proportional to N rather than N2,

C. The Evaluation of the V$

The elements of V,s" are defined by (25). As illustrated in
Fig. 4, a plane wave is incident upon the parabolic cylinder,
making an angle ¢, with respect to the 4 x axis. The free-
space electric field is given by (7). When this plane wave hits
the perfectly conducting parabolic cylinder, the scattered field
at a field point with parabolic coordinates (£, 5) is [16]

<'cot?(—)>p
-1 @ J 2

ES(¢9) =
’ . ¢0;’Efﬂ p!
sin —
2
D,(n,a%)
*Dy(-ta) —L"—— D , (33
p D, (ma) " i{na), (33

provided #/2 < ¢y < = and where the asterisk denotes
complex conjugate. Inserting (33) into (25). and noting that the
field points will be on the negative x axis (§ = 0,7 = V- 2x,
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the scattered part of V,, becomes

<’cotdﬁ)>p
P )

VS (¢0) =
° ) Z:o p!
sin —

Dp(”la*)
D-p—l(’lla)

The major computational effort in evaluating the Z3  of
(31) and the V3 of (34) is the evaluation of the 4,,(p) which
occur in both. Prior to evaluating the matrix elements it is
most efficient to form a table of the A,,(p) form = 1,2, ---,
Nandp = 1,2, ---, P, where P is the largest value of p
required to obtain convergence of the summations. P is
typically chosen as 15. This table then contains all the A,,(p)
integrals needed in the solution, and its use insures that each
A, (p) integral is evaluated only once. Note that for fixed m,
using the recursive relation for the parabolic cylinder functions
[15] allows efficient computation of the P values A,,(p) p =
1, 2, -+, P. However, it is essential to recurse in the stable
direction as described in [14]. We also note that since D,(0) =
0 for p odd, the summations in (31) and (34) need only include
the even values of p.

- D,(0) Am(p). (34

D. Evaluation of the Electric Field

Once the elements in the MM matrix equation have been
evaluated, (17) can be solved for /, and the total field at any
point in space can be found from

N
ET=E'+Y LET (35)

n=1

where as indicated in (22), E] is the total electric field of mode
n radiating in the presence of the parabolic cylinder, and E' is
the total electric field of the incident plane wave in the
presence of the parabolic cylinder. Using the volume equiva-
lence theorem of (5), it is particularly simple to evaluate the
total field within the dielectric cylinder. The average electric
ficld on mode n is simply given by

ET=Z1I,/W,. (36)

Now consider the evaluation of the far-zone scattered fields,
that is, as p — oo. The scattered field is given by (35), except
that we replace E£' by E'S. Then, assuming that the I, are
known, we need expressions for ET and E'S in the far zone.

Referring to (22), ET can be written as the sum of the free-
space field of mode n plus the scattered field of mode n. Here
we will only present an expression for the scattered field. The
far-zone scattered field of mode n at the far-zone field point
(p. ®) can be most easily obtained from (34) and reciprocity.
The result is

ES( «»)—(_k“ 2e ,.~4> v o1
" o 4(4)60 ; \[‘; " '

To obtain an expression for £ in the far zone, we replace

the integer order parabolic cylinder functions in (33) by their
large argument approximation [15]

Dp(z)~zpe—zz/4, |z| » 1and {z] » |p|, (38)

which is valid for all integers p = 0 and all negative integers p
provided |/z| < 3w/4. Since the parabolic cylinder functions
in (33) meet these conditions, in the far zone

— eitko s x/4)

Eis 5

2Vkp sin %’ sin— °7°

S vie

< . o )”
—j cot — cot —
2 2 Dp(noa*)

p! D_,_i(na)’

do ¢
t — cot —|< 1. 9
co 2c02 (39)

IV. NumericaL ResuLTs

This section will present numerical results based upon the
above MM/Green’s function solution for TM scattering by an
impedance sheet in the presence of a parabolic cylinder. The
first example is designed to illustrate the accuracy of the MM/
Green’s function solution by comparison with a limiting case
where an exact solution is available. The frequency is 300
MHz, and the problem geometry is illustrated in the insert in
Fig. 5. Here we have a perfectly conducting half-plane (i.e., a
parabolic cylinder with F = 5, = 0) with a sheet impedance
extension of length L = /2 and impedance Z; = 0 (i.e., a
perfectly conducting strip). The net result is that we simply
have a half-plane. We analyzed the strip extension of the 5, =
0 parabolic cylinder using an N = 10 equal segment MM/
Green's function solution, as already described. Fig. 5 shows
a comparison of the magnitude and phase of the MM/Green's
function and the exact {see [12 , ch. 8]) current induced on a
half-plane by a unit amplitude TM plane wave with edge on
incidence, i.e., ¢p = 180°. The MM/Green'’s function points
are plotted in the center of the segments and represent the
average current over the segment, since we employed piece-
wise constant expansion modes. Fig. 5 shows that the current
obtained from the MM/Green's function solution are very
close to the exact half-plane currents. The only exception is the
current adjacent to the edge at x = 0. Here the MM/Green's
function value is about 5.8 A/m, while the exact value at x =
0.025X is 4.0 A/m. Thus one might conclude that for the edge
segment the MM/Green's function value is high by a factor of
about 1.45. However, it must be remembered that the MM/
Green's function points represent the average current over the
segment and not the current at the center of the segment. It is
well known that the exact current has a 1/Vx edge singularity
as x — 0. For a function with a 1/Vx singularity, the ratio of
its average value from 0 to W, divided by its value at W/2, is
V2 = 1.41. Thus the MM/Green's function value, which is a
factor of 1.45 above the exact current at the center of the
segment, is very close to the average of the exact current and is
as well as the pulse basis function solution can do. It is also
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Fig. 5. Comparison of exact and MM/Green's function solution for current
on perfectly conducting strip extension of half-plane.

TABLE I
CPU TIMES IN 0.01 s FOR VARIOUS NUMBER OF MODES N

N Compute (Z9) Compute [Z9) Crout sol.
15 i 3

10 17 5 3

20 26 20 3

40 45 82 19

80 105 336 143

interesting to note that, in the absence of the half-plane, the
MM solution for the strip current would have an edge
singularity at x = 0.5A. However, by adding [Z5] and VS to
the free-space impedance matrix and right-hand-vector, re-
spectively, the MM/Green’s function solution was able to
‘‘see’” that there was no real edge at x = 0.5A.

Table I shows the CPU times for the above problem with N
= §, 10, 20, 40, and 80 modes. All CPU times are for a VAX
8550. The times shown are an average of five runs on a time-
sharing system. The CPU clock unit was 0.01 s, and thus the
smaller times are not reliable. CPU times are shown for the
computational of [Z5), the computation of [Z°], and the
solution of the order N simultaneous linear equations via
Crout’s method. The CPU time to compute the right-hand-
vector [AZ] or the far-zone field is neglible. Note in Table I
that the CPU time to compute [Z5] is roughly linear with N,
while that to compute [Z°] is quadratic. In fact, for N greater
than about 20, it takes longer to compute [Z7] than to compute
[Z9).

The next set of data will be for the geometry illustrated in
Fig. 6 at 1 GHz. Here we have a perfectly conducting
parabolic cylinder with a multilayer dielectric strip extension
of length L = A = 30 cm. The multilayer strip consists of a
resistance strip of R 1 sitting on top of a lossless dielectric
strip of thickness T = 0.0106A = 1/8 in = 0.3175 cm and

€ =10 t =1 GHz

L =30cm T=03i75cm
R =@ — 2,-j62890
R = 100Ql— 2" 97.5+ j15.50
Fig. 6. TM plane wave incident upon parabolic cylinder with multilayer
dielectric strip extension. Multilayer strip is of length 30 cm ard consists of

R ohm resistance card on top of ¢, = 10 dielectric strip of thickness 0.3175
cm.

relative dielectric constant ¢, = 10. Setting R = oo corres-
ponds to removing the resistive strip, and from (12) the
lossless dielectric strip is equivalent to the sheet admittance Y,
= —j0.00159 8 or the sheet impedance Z; = j628.9 Q. If we
let R = 100 (1, then the 100-Q resistive strip on top of the
lossless dielectric strip is equivalent to Y; = 0.01 —j0.00159
sorZ;, = 97.5 + j15.5 Q. For parabolic cylinders of focal
length F = 0, 1, 10, and 30 cm, Figs. 7(a)-(d) show the
backscatter echo width for these two cases and, for compari-
son, the bare parabolic cylinder. The parabola F = 0
corresponds to a half-plane. In this case the data in Fig. 7(a)
were found to be in excellent agreement with the authors’
previous MM/Green's function solution for TM scattering by
a general dielectric cylinder in the presence of a half-plane,
and where the dielectric cylinder is represented by equivalent
electric volume polarization currents [2]. For edge on inci-
dence (¢, = 180°) and for the F = 1 cm parabola, Fig. 8
shows the magnitude and phase of the total electric field in the
dielectric strip.
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Fig. 7. Backscatter echo width at | GHz for geometry in Fig. 6 for parabolic cylinders of various focal lengths. (a) F = 0, i.e., half-
plane. 0) F = 1 em. (¢c) F = 10em. (d) F = 30 cm.
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V. SuMMAaRY

This paper has presented the MM/Green's function solution
to the problem of TM scattering by an impedance sheet in the
presence of a perfectly conducting parabolic cylinder. The
impedance sheet is an approximate model for a thin multilay-
ered dielectric slab. Explicit expressions for the elements in
the MM matrix cquation are obtained. The impedance matrix
1s written as the sum of the free-space impedance matrix plus a
scattered field matrix which accounts for the presence of the
parabolic cylinder. It is shown that the elements in the
scattered field matrix are a separable function of modes J,
and J,,. The result is that the CPU time to evaluate the (N° +
V)72 elements in this symmetric impedance matrix is propor-
tional to AN, rather than to N7 as in a conventional MM
solution. Numerical results are shown to illustrate the accu-
racy of the method and to show sample results.
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Electromagnetic Diffraction of an Obliquely
Incident Plane Wave Field by a Wedge
with Impedance Faces

ROBERTO G. ROJAS., MEMBER, IEEE

Abstract— A uniform asymplotic solution is presented for the eleciro-
magnetic diffraction by a wedge with impedance faces and with included
angles equal to 0 (half-plane), x/2 (right-angled wedge), r (two-part
plane) and 3x ‘2 (right-angled wedge). The incident field is a plane wave
of arbitrary polarization, obliquely incident to the axis of the wedge. The
formal solution, which is expressed in terms of an integral, was obtained
by the generalized reflection method. A careful study of the singuiarities
of the integrand is done before the asympiotic evaluation of the integral
can be carried out. The asymptotic evaluation of the integral is performed
taking into account the presence of the surface wave poles in addition to
the geometrical optics (GO) poles near the saddle points. This results in 8
uniform solution which is continuous across the shadow boundaries of
the GO fields as well as the surtace wave fields.

1. INTRODUCTION

HE SCATTERING of electromagnetic and acoustic

waves by objects that are not perfectly conducting has
many practical applications. For example, radar absorbing
materials are used to cover objects to reduce their scattering.
To study the scattering properties of objects that are not
perfectly conducting. Leontovich [1] developed a boundary
condition known as the impedance or Leontovich boundary
condition. Although the impedance boundary condition is an
approximation to the exact boundary conditions satisfied by
the fields at the surface of the scatter. it is a very useful
approximation since it allows the solution of many practical
problems which otherwise could not be solved.

Amonyg the various shapes studied in the past. the scattering
by wedge-shaped objects has received a lot of attention [2]~
[26]. There are basically two methods to solve for the fields
scattered by wedge-shaped objects. namely. the Wiener-Hopf
and Maliuzhinets methods. Maliuzhinets [2] introduced a
method to solve the problem of the scattering of a normally
incident plane wave by a wedge with impedance faces. Note
that for the case of normal incidence. the problem can be
scalarized by separating the fields into TM, and TE, polarized
components. The Maliuzhinets method basically consists of
expressing the total field as a spectrum of plane waves which
can be written as an integral with an unknown spectral
function. The unknown spectral function is then determined
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with the application of the boundary. radiation and edge
conditions. The key step in the Maliuzhinets method is the
transformation of an integral equation 1ato a first-order
functional difference equation whose solution vields the
unknown spectral function. Once the difference equation 1s
solved, the integral representation of the fields can be
asymptotically evaluated. The problem becomes much more
complicated for the case of oblique incidence. Several authors
have studied the scattering of an obliquely incident plane wave
by a wedge (3], [9], [13]. [24]. [25]: however, each of the
solutions in [3], [9]. {13]. [24]. {25] is valid for only a single
wedge angle. Moreover, all of the above asymptotic solutions,
except for [9], do not take into account the presence of the
surface waves excited at the edge of the impedance wedge. In
other words, the surface wave poles near the saddle point were
ignored. In [9]. the integral representation of the fields
scattered by a half-plane with different impedances on each
face is given, but the asymptotic evaluation of the integral for
the case of oblique incidence is not performed. The present
author obtained an exact solution using the Wiener-Hopf
method for the the field scattered from a planar surface with an
impedance discontinuity and from an impedance half-plane
[19}. The asvmptotic evaluation of the exact solution in [19].
which 1s expressed 1n terms of an integral, was carried out
taking into account the presence of the surface wave poles near
the saddle point. It is noted that the scattering from a right-
angled wedge can also be solved with the traditional separation
of variables technique by making a change of variables first
suggested by Lewyv [27] and Stoker [28]. This method was
followed by Hwang [22] and Karal er al. [23].

This paper is based on the generalized reflection method
(GRM) which is more general than the Wiener-Hopf method
[19]. The GRM. which is a generalization of the Maliuzhinets
method. was developed by Vaccaro [12]. [13] to study the
scattering from an impedance wedge excited by an obliquely
incident plane wave as depicted in Fig. 1 where the z-axis
coincides with the wedge-axis. Since the TM,. and TE;
polarized fields are coupled for the case of oblique incidence,
a two-element column vector f.. whose clements are the 2
components of the electric and magnetic ficlds, is defined. It is
then sufficient to obtain a solution for 7. since all the other ficid
components can be determined from f.. Next. as in the
Maliuzhinets method. the vector J- is expressed as an integral
along the Sommerfield contour with an integrand that can be
written as the product of an unknown spectral function £ and
a known exponential function. Since the integral sausfies the

0018-926X/88/0700-0956301.00 < 1988 IEEE

IETNNNINNNNNNNNA—————




ROJAS. ELECTRUMAGNETIC DIFFRACTION OF OBLIQUELY INCIDENT PLANE WAVE FIELD

scalar Helmholtz equation. the next step is to impose the
boundary conditions which yield an integral equation for the
column vector F.. The integral equation is then converted into
a functional difference equation which is referred to as the
generalized reflection equation (GRE) {12]. Unlike the case
considered by Maliuzhinets. the GRE is a second-order
difference equation which is much more difficult to solve than
a first-order one. It turns out that the GRE can be solved in
terms of the Maliuzhinets functions for four wedge angles,
namely, the half-plane and the two-part impedance plane with
arbitrary impedance values on each face and the #/2- and 3w/
2-wedges with one face a perfect electric conductor (PEC) or a
perfect magnetic conductor (PMC). Recentdy, Senior [26]
described a procedure similar to that tollowed by Vaccaro
{12]: however, one face of the wedge 1s always a PEC in (26].
Furthermore, the spectral function for the 3w/2-wedge in [26]
does not reduce to the known spectral function when 8 = #/2
because the constant ¢, in [26] is incorrectly evaluated.

The purpose of this paper is to obtain a uniform asymptotic
solution for the four special cases mentioned above. The
asymptotic evaluation is performed taking into account the
presence of the geometrical optics (GO) poles as well as the
surtace wave poles (complex poles). This results in a uniform
expression across the shadow boundaries of the GO and
surface wave fields.

The expressions for f, and F. are given in a very compact
matrix notation. This is especially useful when the unknown
constants appearing in the spectral function F. have to be
determined. Besides being compact. the matrix notation also
helps in the physical interpretation of the results, and it is
suitable for numerical computations. Several numerical exam-
ples are presented and the effect of the impedance values on
the diffracted and surface wave fields is discussed. Note that
all the fields in the following discussion have the e~ '’ time
dependence which is suppressed. Throughout this paper, a bar
and a double bar on top of a function name denotes a two-
element column vector and a two-by-two matrix, respectively.

II. STATEMENT OF THE PROBLEM

The problem to be considered here is the clectromagnetic
{EM) diffraction by a wedge with impedance faces as shown in
Fig. |. The faces of the wedge are labeled 0 and 7 and the
exterior wedge angle is nw. Let p. ¢. and T denote the
cylindrical coordinates with the z-axis coinciding with the
wedge axis. As depicted in Fig. 1. the angles © and ¢’ are
measured trom the G face. The impedance of face 0 is Z,,
while the impedance of face n is Z;, where both Z, and Z, are
scalar constants. In other words, the impedance faces are
isotropic and homogeneous. The faces of the wedge satisfy the
Leontovich boundary condition. namely

-

E-6(6 - E)=+bxHZ,

Ry

- -

Ry

- o= 0
=FopxEY = 1
) P ; ] {ﬂﬂ' (N
where 4 is the unit vector normal to the plane ¢ = constant,
Yi: = V/Z,; and E and H are the clectric and magnetic

vector fields. respectively.
The incident field is assumed to be a plane wave of arbitrary
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polarization, obliquely incident *n the axis of the wedge as
depicted in Fig. 1. As shown in [17], [29], if all the tields have
the same exponential z-dependence exp (ikz cos ), which is
the case here, then it is sufficient to find the solution for the z
components of the electric and magnetic fields. Thus let /, be
defined as follows:

E.
filp, 0, 2)= [VOHJ @

where E. and H, are the I components of the electric and
magnetic fields, respectively, and 7 is the free-space intrinsic
impedance. The column vector f. plays the role of a vector
potential since all the other field components can be obtained
in terms of f,. It follows from (2) that the incident field can be
defined in terms of /7, i.e..

.| E.
I [voH:J
=Fp. exp (—iKp cos (¢ —¢")) exp (ikz cos B)

-
Fy.= Eo: ] O<o¢’<nrm 0<fB<T
L')oHu:

<

(3)

where 0 < ¢ < nm, K = ksin3and p = vx* + y-. Note that
Eo, and F,, are arbitrary constants and & is the free-space
wavenumber. To obtain a unique solution, the fields have to
satisfy two more conditions; namely, the radiation and edge
conditions.

I1I. GeneraLiZED REFLECTION METHOD

Following Maliuzhinets approach, the total field f; is
expressed in terms of a spectrum of plane waves. This
spectrum can be written as an integral along the so-called
twofold Sommerfeld contour v depicted in Fig. 2, i.e.,

e ikz cos 8

fz(P; ¢1 Z)= 27('

_ nw
Fla+—-
L (a > ®)

s exp (—iKp cos a) da  (4)

where the function £ is unknown at this stage of the analysis.
However, due to the radiation and edge conditions. one can
deduce that F is an analytic function for [Im «| > d. where d
is a positive real constant. Note that the integral in (4)
converges uniformly, and satisfies the scalar Helmholtz
equation and the radiation condition provided that the contour
v, shown in Fig. 2, lies on the half-planes defined by |Im o| >
d. It also follows from the edge conditions that the asymptotic
behavior of F. is

olim F.(a) = constant vector. %)

Moreover, the presence of the incident field, given in (3),

implies that F,(a) must have one first-order pole singularity at
a = nx/2 - @',

After applying the boundary conditions, (4) becomes an

integral equation which can be transformed into a functional

|
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Fig. 1. Impedance wedge with obliquely incident plane wave.

Fig. 2. Sommerfeld contour . Shaded area: real (—iKp cos a) < 0.

difference equation [2], namely, iv;. The real part of v is restricted to the interval [0, /2]
\ because it is assumed that Re (Z, ;) > 0. Equation (6) is called

(I'sin azsin 7,)C(a)F, <a:tﬂ) the generalized reflection equation which is very difficult to
2 2 solve because of the nondiagonal matrix C(a). In fact, (6) can

nr be reduced to two scalar second-order functional difference
=(-I'sin a+sin 5))C(-a)F, (— o« j:-—> (6) equations for the fields £, and H,, respectively. Note that for
2 2 the case of normal incidence, i.e., 8 = #/2, C(a) becomes

diagonal and (6) reduces to two first-order functional differ-

Clar=1 Isi ence equations which are easier to solve. This special case was
(a) =T cos a+Jsin o cos treated by Maliuzhinets {2] and a uniform expression has been
I- [ 1 0] 7= [0 - 1] @ obtained in [16}; however, the presence of the surface wave

where

01 1 0 poles near the saddle points was not taken into account in [16].
: . . ) In general, if one finds a solution F, for (6), another solution
The diagonal matrix sin 7, ,, sometimes referred to as the s given by F,(a)d(a), where G(a) satisfies the difference
modified Brewster matrix, is given by equation
. sin v¢ 0
in B 4= 1,2 . nw _ nx
$in Vi [ 0 sin "’1',2] a<at7>=a<—ai7> . 9)
r
Y, Thus the most general solution of (6) can be written as follows
Yo sin 8 0 < Re(v) € 7/2
212 ‘ Fu@=F.(@d)=[F Fliw (10)
70 sin 8

(8) where F, and F, are solutions of (6). It can be shown that a

solution for (6), i.e., Fz(a), can be found in terms of the
where Yy = 1/ng is the free-space admittance and v = », + Maliuzhinets functions, introduced in [2], for the following

PR
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y where
¥.(x) 0
Y()=| ¢ . 12
P (@) 0 ¥,(a) (12)
é

¢’ R It also can be shown that ¥, ,(a) can be expressed in terms of

hxxxxxxnxx x*xxd Y & @ S G v G SV Y G B6 4 S S Sv AN o1 2y 47 & A another ﬁlnction, namely’

z . z,
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nw
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e - y d -0
¢
$
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(d)
Fig. 3. Geometries for which generalized reflection equation has been
solved(ayn = 1.(b)n = 2. (c)n = 3/2. (d)n = 1/2.

four cases (see Fig. 3) when 8 # #/2:

a) two-part impedance plane, n = 1
b) half-plane, n = 2
c) n/2-wedge where Z, = Qor Z, = », n = 3/

2
d) 3x/2-wedge, where Z, = 0or Z, = o, n 1/2.

Thus, the solution of (6) for the cases described above can be
written as follows:

F.)=8Ya)¥(a)

o(e).

), for n=2

C(a+%t).

and Z,=0or Z,=

for n=1

S(a) =5 (1)

forn=3/2,1/2

nx T nr T
‘I’e_;,((!)=¢,, <a+?+vf'h°5> \&n <¢1+-§‘+E—yf"'>

(13
where J,(«) is the well-known Maliuzhinets function. The
function () and its properties are discussed in {2]. For our
purposes, it is enough to mention that

i -0 < [Im af >
=L Ya(a)=0 {exp n

a—=%x/2 )
cos I

Vnla~m)=Yp(la+x) —— . (14)

a+ w/2>
cos 3

The next step in the analysis is to find a solution for (9). It is
easy to verify that one solution of (9) is the function & sin (a/
n) where 4 is an arbitrary constant. Furthermore, one can also
show that 4 sin’ (a/n), where [ is an integer, is still a solution
of (9). Thus keeping in mind that ¢(a) must have a first-order
poleata = nx/2 — ¢’, the most general solution of (9) can
be expressed as a Laurent series around the point sin (nx/(2n)
— @’/n) = cos (¢’ /n). By enforcing (5), which was derived
from the edge conditions, it turns out that for the cases being
considered here (n = 1/2, 1, 2, 3/2), the series for ¢(x) must
stop at the second term, i.e.,

a_,

[+ 4
#e) = +do+d, sin <-> )
A 0 n
sin — }J—COSs —_

n

Since d_,, d,, and 4, are unknown constants in (15), the
solution for F is not unique. To obtain a unique solution, the
unknown coefficients in (15) must be determined. The first
coefficient d_, can be easily evaluated by noting that the
residue of F, at the pole « = nx/2 — ¢’ must be equal to
the incident field. Thus d_, is given by

i '/ n _
d_,:iﬂ?;"_) ¥ -1 (E_¢'> Ky <_1r_¢,> Foz,

n .2 2
0<o¢’'<nw. (16)

The other two coefficients are determined by first observing
that the matrix §-"(a) introduces complex poles whose
residues are fields which have no physical interpretation. Thus
the unknown coefficients d~ and 4, are adjusted in such a way
that the complex poles of S - (a) are removed. This is done by
solving for d, and d, in a system of linear simultaneous
equations (see (38a) in the Appendix). When Z,; = Oor Z,
= oo, some of these equations become linearly dependent and
thus are not sufficient to solve for d, and d,. However, the

L .
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edge conditions will dictate that some of the constant must be

equal to zero. Thus once the constants have been evaluated,
the sowution for the function F, can be written as follows:
Fa+nn/2-¢)=A(a+nn/2~¢)Fy,, 0< o< nx

(17a)

where

Aa+nn/2-¢)=8-Y(a+nn/2-¢)
. ‘Tl(a+mr/2—d>) sin <¢—>/n
n
7
(552)-=(%)
cos —-Cos | —
n n

+8,+D, cos (a-qs)

n

¥ -Ynx/2-6)8(nn/2-9¢")
(17b)

and the constant (two-by-two) matrices B,and D, are given in
the Appendix. Thus a formal solution for F, has been found for
four wedge angles in terms of an integral along the Sommer-
feld contour. For the cases being considered here, y,(a) is
given by

bior-og [ [ 2220

i du} (18a)

0 cos u

—1 e msinu—2 V27 sin (u/2)+2
dala)= 2xp {g{ 7 sin T sin (u/2) .udu}

cos cos
6 6
cos? <I> cos (E)
6 6

Yi2(@)=cos (a/2). (18¢c)

Jo cos u

(18b)

Yinla)=

When 3 = #/2 (normal incidence), (17b) becomes
Aa+nx/2-¢)=VY(a+nr/2-¢)¥ "(nx/2-9")
sin (¢'/n)/n

(52)-= (%)
Ccos —Cos {\ —
n n

Unlike (17), the expression in (19) is valid for any wedge
angle.

An important identity that will be very useful when the
diffracted field is developed is the following:

(19)

&(a—r):“(a#-r)l\?[(a). (20a)

Equation (20a) is obtained by a repeated use of the identity
given in (14). The diagonal matrix M(«) is given by

= | M(x) 0
M(‘")'[ 0 M"(a)]
Met(a)=m(a, »{*)/m(—a, v$*)  (20b)
where
a+mr/2—v> (a—1r+nw/2+u>
cos | ————} cos | —m—m—@
2n 2n
m(a, v)= .
<a+1r+n1r/2—v) <a+mr/2+v>
cos | ———— } cos | ——
2n 2n
(20¢)

For the =/2- and 3w/2-wedges (n = 3/2, 1/2), where Z, is
equal to 0 or o, the functions ¥, ,(cr) and M*#(c) have to be
carefully examined. Table I summarizes these special cases.

Note that spectral function F.(¢ + nw/2 — ¢) is equal to
zero when ¢’ = 0, nw (grazing incidence) as long as Y(nx/2
— ¢’) does not have any zeros at ¢’ = 0, nx. However, for
the right-angled wedge problem where Z;, = Oor Z; = oo, the
function ¥ (nr/2 — ¢ ') does have a zeroat ¢’ = 0. Thus for
n = 1/2, 3/2, and with the help of Table I, ¥-'(nx/2 - ¢")
sin (¢’ /n)/n can be evaluated at ¢ = 0 by taking the limit as
¢’ goes to zero, namely,

i NN LIV ¢_I —3 g 0
‘{;510‘; <2 ¢>sm<n>/n—n 0 g (21a)

where

o) ()

gr=0for Z,=0, n= (21b)

lw
[ X ]

and

AN

31
for Z, = oo, n=-2- '3 2lc)

5

Note that when ¢’ = 0 the pole @ = ¢ (see (17b)), which
appears to be a double pole, is still a simple pole. Further-
more, it also follows from (17b)-(21) that for ¢’ = 0 and Z,
= 0, only a TE,-polarized incident plane wave (Eo, = 0, Hy,
# 0) will excite a nonzero scattered field. This agrees with the
boundary conditions satisfied by the fields on face 0 of the
wedge. On the other hand, if Z, = o, the incident plane wave
has to be TM,-polarized, i.e., Eo, # 0, Hy, = 0 (which also
agrees with the boundary conditions), to have a nonzero
spectral function £, when ¢’ = 0. It is important to keep in
mind that since (21) was derived by taking the limit of ¢’
going to zero, the constant Fy, in (17a) must be divided by 2
for the case of grazing incidence.
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TABLE 1
n=3/2,1/2

Z| =0. Zz#:(), finite

M*wu)=1/m(-u, v¥)

Me(u)=cos <

Z =, ZﬁtO. finite

2n

Me@)=1/m(-u, v5)

Uu-rt+nx/2

29 T
*ﬂa)—cos<:5;4jz> wn

M*(u)=cos <"_"_'.+_"'/_2) /m(=u, V*)/cos (“+1’+nt/2)

.z ar ’-I _ﬂ- ¢ :
¥, (a)=cos (ﬁ+z) Vn (a—7+vz 2) Vo (a 3 y1+2>
nx Ld n¥ «
¥ila) =y <&—T+y;'—i> Yn ( —-2_4-5_,,:)

2n

N

+ /
/m(—u, vS)/cos (wf—z>

- - . = e

L . .
(a 2"’”: 2>¢,,<a 3 v:+2>

2n

As mentioned before, Senior {26] obtained an expression
for the spectral function Fy(a) for n = 1/2, i.e., $y() and
sy(a) in (57) and (58), respectively, of {26]. However, si(c)
does not reduce to the known result when 8 = 7/2. The reason
for the error is that the constant c,, given in [26], is incorrectly
calculated since it should be equal to zero as dictated by the
edge conditions. In other words, with c; as computed in [26],
the spectral functions s,(a) and s;(a) do not satisfy (5) (in this
paper), which all valid functions must satisfy. Although the
constant ¢, is incorrect, the field E, obtained in (59) of [26] for
the 3x/2-wedge is correct because it turns out that ¢, and ¢, do
not contribute to the fields E, and H, when n = 1/2. This
important point will be explained in more detail in Section IV.

IV. AsympTOTIC ANALYSIS

In general, the integral in (4) cannot be evaluated in closed
form due to the complicated nature of the integrand. However,
as is the case in most diffraction problems, one can apply
asymptotic integration techniques to obtain useful solutions.
Here the method of steepest descents will be used to obtain the
leading term of £, for large Kp.

The exponential function in (4) has two isolated simple
saddle points at « = 7 and « = — x. Furthermore, F (a +
nx/2 — ¢) is an analytic function, except for some real and
complex simple poles. The real poles are located at

af=¢t¢’+2nxN, N=0, £1, £2, -+, (22)
For n = 1/2, all the pole singularities of F;(a + nx/2 - ¢)
are given in (22), i.e., F,(a + x/4 — ¢) does not have
complex poles. Moreover, as shown later, the integral in (4)
can be evaluated in closed form when n = 1/2. Thus the
asymptotic evaluation of (4) for n = 1, 3/2, and 2 will be

discussed first. At the end of this section, a closed-form
expression of (4) will be obtained for n = 1/2.

In addition to the real poles in (22), F,(c + nx/2 — ¢) also
has complex poles when n = 1, 3/2, 2. Actually, these
complex poles are the poles of the function Yo + nx/2 - ¢)
and the ones closest to the saddle points a = =+ x are

af;:,=¢+r+vl'" a;;:,=—v§"'—1r+¢—n1r. (23)
The pole ay,, is closest to the saddle point « = = and, if
captured, its residue contribution can be interpreted as a
surface wave traveling away from the edge on face 0.
Likewise, o, is the pole closest to the saddle pointax = —«
and, if captured, its residue contribution is a surface wave
traveling away from the edge on face n of the wedge. The
poles listed in (22) and (23) are depicted in Fig. 4. It is noted
that since sin »{ ,*sin "'x'.z = 1/sin? B, only two surface wave
poles can be captured for given values of Z, and Z,.

The first step in the asymptotic evaluation of (4) is to
introduce two steepest descent paths SDP(+¥) passing
through the saddle points @ = % as shown in Fig. 4. After
deforming the original integration contour into SDP(x) and
SDP( - 7), f, becomes

T:o, 6, D)=TFi(p, .2)+ ], (p, &, 2)
+/7,(0, 6, D)+ T3 () 6, 2)+7 3 (0s &, 2)

+74p, ¢, 2, n=1,3/2,2. (24)
The functions %, 77, 77, f*%, and 7%} are the residues of F;

evaluated at the poles that are captured when the integration
contour is deformed. Thus f* is the incident field, /7, and /",
are the fields reflected from the O and n faces of the wedge,
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Fig. 4. Steepest descent paths and pole singularities of function F (e +
nx/2 - ¢).

respectively. Likewise, /37 and ff,"z' are the surface wave fields
traveling away form the edge on the 0 and n faces of the
wedge, respectively. These fields are given by (n = 1, 3/2, 2)

Fi=AFo, exp (—iKp cos B;)
* exp (ikz cos B U By +m) - UB; -m] (25a)
Jo=PFor exp (—iKp cos 8)
- exp (ikz cos B8) U(r-8;) (25b)
Jiy=PFo, exp (- iKp cos (B} —2n7))

- exp (tkz cos BYU(By —2nw+7) (25¢)

rI’J},z exp (—iKp cos ay) exp (ikz cos B)

- U(os,—9), if Im (Z,)>0
=5 (25d)
PsFy, exp (—iKp cos as) exp (ikz cos )
L U(e* -9), if Im (Z,)<0

r?J},z exp (— iKp cos ag) exp (ikz cos B)
S U@G=0%),  ifIm(Z)>0

P, Fy, exp (—iKp cos ;) exp (ikz cos )
- U(p-9"), ifIm(Z;)<0

7=y (25¢)

~

where U is the unit step function, 83§ = ¢ + ¢’, and it is not
to be confused with 8. The residues {7} are computed as
follows:

n
F=lim (ot—aq)/i'z <a+—2-1r—¢> y I=1,2, 4,7 (26)
a—al

where the poles {ay}]_,, and the angles ¢%* and ¢%* are

given, respectively, by

a=¢—¢’ a=0+¢’
a=¢+¢’' -2nx Qs=¢+ T+ poh
agr=¢p—nw—-x—vih

and

eh A
¢ =—v;; +arccos (1/cosh » ")

eh ek
$ 2 =nw+v;y —arccos (1/cosh v §;).

Evaluating (26) yields
P, 1= I

-
C-lx+o")A@', n)C(x-9"),
n=1,2

P={ 3
e (7”+¢'> ie (37”-4,')4.,

t n=3/2,

rif-'(vr+<as')7\(mr—<»', n)C(r-9¢"),
n=1,2

n=3/2,

’3=J
C-'(w—%’f) (nw—¢',vz)C<37"—¢'>.
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(28¢)
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where
_|R@»v O _Sna-siny
K(a, y)— [ 0 R(a, y")] R(a, V) sin a+Sin 1 4
(28d)
and
-L, forZ,=0 (1 0
Kl={ E’ forzlzm [—[0 -1].
(28e)

Note that 7, /%, and 7; are the residues of A da + nx/2 - @)
evaluated at the GO poles. The residues corresponding to the
complex surface wave poles are given by (n = 1, 2)

Ps=8t (remhs T ) 2o (1)
2 2n
- sin <¢—> ﬁ(¢.|h¢” <”T"I>
n 2

T
)= ()
cos ~—COs —
n n

x4 poh
+§,,+15,,cos< ! )

n

(29a)
and (n = 1, 2, 3/2)

Foa=~8-1 (—’;—r—v‘z"") 2 sin (%)
. [d T
sin (7) P anin ("‘r--z-)

7

'h ’

T+ o
- cos ~cos | —
n n

(29b)

where the matrices P, and Pz, introduced in (29) can be

written as follows:

a 0 Jo o
r-50] P[]
P22= [%e g] p:;,= [g :h] . (308)

The constants @, , and b, , can be expressed in terms of the
Maliuzhinets function y,,, namely,

r T
@ p=Yn <n1r+2vf-"+z> ¥n (,,L;.h+"§,h+5>

3
* ¥n <;+V'§'h“‘§'h>, n=1,2 (30b)

n=1,2 (30c)

T 1f+l'§
be=n (—nw—5—2v§> cos < 3 >
3

bp=v, (—mr-;—b’z’) , for n=£ , Zy=0 (30d)

b¢=¢n(—nf"§-2y§> bh=¢n<—n-‘__§_2y'zl>

1r+v'2' 3
* cos 3 for n=£ , Zy=0. (30e)

It is obvious that for the x/2-wedge (n = 3/2), /45 = 0. 1In
other words, no surface wave can exist on the 0 face of the
wedge when Z; = Oor Z, = oo.

The last term that needs to be defined in (24) is /¢, which is
referred to as the diffracted fieild, and it can be expressed as
follows:

g _exp (ikz cos ) nm )
Fp, 6, 2) e an, A | a+ > ¢

- Fo, exp (—iKp cos @) do

+exp (ikz cos )
2xi

- nx
o A(r)
SDP(- 1) 2

- Fy, exp (- iKp cos a) da 31

where SDP(+ ) are the steepest descent paths depicted in
Fig. 4. The asymptotic evaluation of (31) is based on the work
of Gennarelli and Palumbo [30]. Actually, the simplified
expressions given in [31] are used here.

Without going over the details, the asymptotic evaluation of
(31), taking into account the presence of all the poles of F;
near the saddle points « = + «, and keeping only the leading

963
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terms of order (Kpp)~ "2, yields

fg(pv ®, Z)"bz(d’, ¢,v Lv 141 VZ)

to the observation point, and L = s sin? 8. The diffraction
coefficient D, is given by

De(¢, ¢,, B: L' 41 l'2)= -[Dz(¢1 ¢,i B, Ll vy, "2)[

eke
fix=0,y=0,2) Wb B (32a) (35b)
where where £ was defined in (28e).
X ix/d o3 ’
Db, 6"\ L, v, rym e n /1) &y s2 -8 ¥ (x4 /2~ 8)
nv2xk sin 8
e N
I +B,+D, cos("“”>
(52)-=(%) "
cos ————— ] = COS —
n n
. 4 r
_M<n_1r_¢> I +B,,+b,,cos<1r+¢>
T ()= (%) "
costf —— )J—COos { —
- n n J
' 7 F(1 - FGkLsD)
/2 6) (T /2= ") - ——en ! 32b
Vdrk sin 8 ;o) St 325)

and L = p sin 8. The matrix M(«) was defined in (20b), and
the constants B, and D, are given in the Appendix. The
function s, is given by

s;= —exp (in/4)V2 cos (%) I=1,2, -+, 7. (33a)

where

if |Re (o) < 27
if Re (a;)>2r (33b)

oy,
o= 27 +ilm (a)),
if Re (o)< =27

—2r+ilm (),

and the poles {«;} were defined in (27a).

For practical applications, it is convenient to express the
diffracted field in the ray-fixed coordinate system [32]. Thus
the unit vectors ¢, &, 3’, G, and é depicted in Fig. 1 and the
column vectors f and /' are defined as follows:

The diffracted field f;‘ can then be easily obtained from (32),
namely,

eiks
Vs

where QF is the point of diffraction, s is the distance from QE

fg(sy ¢v 6)~De(¢1 ¢” Bn L' Vis VZ)f’e(QE) (353)

The diffracted field given in (32) and (35) is valid as long as
all the poles {oay} are simple. However, when there is the
possibility of double or higher order poles; i.e., when¢’ = 0,
nx, ¢ = 0, nrand/or Z,; = 0, o, the integral in (4) can be
evaluated in a manner suggested in [30]. Note that for the case
of grazing incidence, the spectral function £ in (17) is equal to
zero, except when Z, or Z; is zero or infinity. It can be shown
forn = 1 and 2, as was done in (21) for n = 1/2 and 3/2, that
F, still has simple poles when Z, = 0,  and ¢’ = 0 or when
Z, =0,oand ¢’ = nr.

The function F(x) introduced in (32b) is the well-known
[19], [32] transition function

F(x) = 2ivxeis S' e~ d

vz

-371r<arg (x)<§ (36)

where x is allowed to be complex Cue to the presence of
complex surface wave poles. However, because of the square-
root function x!/2, it is necessary to introduce a branch cut on
the x plane so that F(x) will be a single-valued function.
Furthermore, to assure the convergence of F(x) as |x| = o,
the branch cut that is chosen runs from the branch point x = 0
to infinity along the positive imaginary axis on the complex x
plane. Thus the argument of x is restricted to the interval
-3%/2 < arg (x) < x/2.

The evaluation of (4) for # = 1/2 proceeds in the same
fashion followed for n = 1, 3/2, and 2. That is, the original
integral in (4) can be expressed as the sum of the residues
corresponding to the poles enclosed by the integration paths
depicted in Fig. 4 plus the two integrals given in (31). In
additiontothepolesa = ¢ — ¢, a =P+ ¢',a =0 + ¢’
— m,oneof thepolesa = ¢ — ¢’ + x will also be captured,
depending on the angles of incidence and observation.
Furthermore, it is easy to show that the periodic spectral
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function F(c) has a period of 2« for n = 1/2, which means
that the two integrals in (31) cancel each other. Thus the field
J: can be expressed as the sum of four residues, namely,

7= Texp (- iKp cos BO')+K, exp (—iKp cos 3;)
*= | +7(exp (iKp cos B;) = L exp (iKo cos B;))

- Foz exp (ikz cos B) (37a)
where
P=C-Yo' —n/2A(x/2-9", v)C(x/2~9') (3Tb)

and Z, A, and A were already defined. The minus and plus
signs in (37a) correspond to the case when Z, = Oand Z, =
o, respectively. Since the field f. in (37a) is made up of
residues corresponding to the GO poles, the constant matrix 5,
in (17b) does not contribute to f, (D, is zero for n = 1/2).
This is why the field E. in [26] is correct even though the
constant ¢; (in {26]) is incorrectly evaluated.

V. NuMERIicAL RESULTS

To obtain numerical results, an efficient algorithm was
developed to compute the Maliuzhinets functions. A 16-point
Gaussian integration algorithm was used to compute the
Maiiuzhinets functions for the half-plane and the two-part,
impedance plane.

In Fig. 5, the field scattered by the two-part planar surface
is depicted. The scattered field was computed for various
values of Z; while Z; was kept constant. As expected, when Z,
= Z,, the diffracted field is zero and the scattered field is
equal to the reflected field. When Z, is twice the value of Z|,
the diffracted field starts to contribute to the scattered field.
Thus, due to the interaction of the reflected and diffracted
fields, the magnitude of the scattered field starts to fluctuate.
The fluctuations become larger when Z, is equal to the
complex conjugate of Z,, which means that the diffracted field
is larger. Besides the diffracted field, surface waves are also
excited along the z axis where the impedance discontinuity
occurs. One surface wave travels on the Z,-impedance haif-
plane, while the other travels on the Z,-impedance half plane.
The effect of the surface waves is stronger near the surface of
the two-part impedance plane. Thus in Fig. 5 the surface wave
effects can be observed from 0 to about 10° and from 170 to
180°. It is important to mention that in addition to the
copolarized scattered field, i.e., reflected, diffracted and
surface wave fields, there is also a cross-polarized component
when the incident field is obliquely incident.

The second geometry considered here is the half-plane with
different impedances on both sides. An important result for
practical applications is the study of the fields excited by the
edge of the half-plane, i.e., the diffracted and surface wave
fieids. In Fi,,. 6, the edge excited fieids (diffracted and surface
wave) are plotted for two different values of Z,, while Z, is
kept constant. For reference, the diffracted field for a perfectly
conducting half-plane (Z, = Z; = 0) is also depicted. Note
that for the perfectly conducting half-plane, the diffracted field
(of order (Kp)~'/?) has the same polarization as the incident
field. However, for the impedance half-plane, the diffracted
(of order (Kp)-'?) and surface wave fields have a cross-
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Fig. 5. Field scattered by two-part impedance plane for obliquely incident
plane wave. (a) TM, polarization: E,, = 1, Hy, = 0. (b) TE, polarization:
Ese = 0, noHy, = 1.

polarized component in addition to the copolarized fields when
B # =/2. Note that when the direction of propagation of the
incident field is normal to the wedge axis, the cross-polarized
fields vanish. Another important difference between the PEC
and impedance half-planes is the presence of the surface wave
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fields. Since the diffracted field (of order (Kp)~!/?) tends to
zero as the observation angle approaches the surface of the
half-plane. the surface wave becomes important in this region.
In Fig. 6, the effect of the surface waves can clearly be seen
from 0° to 20° and from 340° to 360°.

In Fig. 7. the effect of increasing the reactance of Z, on the
surface wave traveling on the Z,-surface is studied. When Z,
= 0.05 + i0.5, the surface wave traveling on the Z,-surface
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Fig. 7. Total field excited by plane wave obliquely incident on impedance

half-plane. (a) TM, polarization: £y, = 1, H,, = 0. (b) TE, polarization:
EO: =0, 7’0”0: = 1.

is small. However, when the imaginary part of Z, is increased
to 2.5, the surface wave becomes much stronger, especially
the copolarized component. Although not shown here, note
that the agreement between the solutions presented here for n
= land n = 2(Z, = Z,) and the solutions presented in {19],
which are based on the Wiener-Hopf technique is very good.

The last geometry considered is the »/2-wedge. In Fig. 8,
the incident field illuminates the PEC-face of the wedge and
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plots for three values of Z, are shown. The effect of Z; on the
scattered field is not very significant when the incident field
illuminates the PEC face, except on the region from 260 to
270° where the surface wave effects are important. In other
words, Z; does not play an important role on the diffracted
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field (for the case considered in Fig. 8); however, as
expected, it still plays an important role on the surface wave
field. The last example is shown in Fig. 9, where the incident
field illuminates the Z,-surface and the other face of the wedge
is a PMC. The total field for two values of Z, is depicted, and
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it can be seen that the effect of Z, is very significant. When the
reactance of Z, is increased (in magnitude) from -0.05to -
0.8. the cross-polarized component becomes much more
important. This makes sense, because if Z, were set equal to
zero (PEC), the cross-polarized components of the reflected
and diffracted (order (Kp) - ") fields would be zero.

VI. CoNCLUSION

A uniform asymptotic solution for the fields scattered by
four special cases of an impedance wedge was presented. The
incident field was assumed to be a plane wave of arbitrary
polarization, obliquely incident to the axis of the wedge. The
uniform solution, which is valid for large Kp, was obtained by
means ot the method of steepest descents. The asymptotic
evaluation of the integral was carried out by taking into
account the presence of the geometrical optic poles (real poles)
as well as the surtace wave poles (complex poles). This
resufted in an expression which is continuous across the
shadow boundaries of the GO and surface wave fields.

The diffracted field developed here is of order (Kp)~'?
with respect to the incident field. Thus, for nonzero finite
values of Z, -, and when Kp is large, the diffracted field is zero
on the surtaces of the wedge. To obtain a more accurate
diffracted field on the surface the wedge. it is necessary to
include the next term of order (Kp)~** as suggested in [15],
{16]. The diffracted field presented here is valid for any
combination of incidence and observation angles. except that
special care must be taken for the cases of grazing incidence
and/or when Z, » is zero or infinity.

The expressions for the reflected, diffracted, and surface
wave fields were written in a very compact matrix notation.
Besides being compact. the matrix notation is suitable for
numerical computations, and it helps in the physical interpre-
tation of the results. For example. each field component of £,
(see (24)}, not including the incident field, was written as the
product of three matrices and the incident ﬁeldf’z(z =0,y =
0, ) = Fy, exp (ikz cos ), namely,

retlection,
§ | diffraction, ew. | $fi(z=0, y=0, 2).
coefficients

Thus one starts withf':(x = 0,y = 0, ) and after multiplying
fix =0, ¥ = 0, 2) times the transformation matrix S. one
obtains an expression which is proportional to the field
components normal to the wedge walls. Next, multiplying
§f’_(x = 0, v = 0, z) times the reflection, diffraction, or
surface wave launching coetficient, one gets the ‘‘normal’’
components of the reflected. diffracted or surface wave fields,
respectively. The last step is to multiply these ‘‘normal’’
components times the inverse of the transformation matrix 3 to
obtain the tangential tield components, i.e., z-components.

It is important to keep in mind that for the case of oblique
incidence with respect to the axis of the wedge, the fields
scattered by the impedance wedge will have TM, and TE,
polarized components regardless of the polarization (TM, or
TE.) of the incident plane wave field. Finally, note that the
elements of the column vector f" are proportional to the ray-
fixed coordinate system used in the geometrical theory of

diffraction [32]. Thus the representation of the fields in terms
of f, is the most appropriate in diffraction problems.
APPENDIX

The constants B, and B, are obtained by solving the
following equation:

’ t
ve - V() +B,+D, sin <Ex—}5>
(-0 <"—¢') "
on(e)=an |
¥ <f1_¢,> 3 ("_'_¢'> F,,=0 (38a)
2 2
where a7 are the poles of §-Y(a) and

vi=[+i, 1]  om(e)=sin (;) . (38b)

Note that v= is a one-by-two row vector. The details of the
solution of (38a) are given in [12], {13], and they will not be
repeated here. Only the final results for the cases considered in
the previous sections, i.e., n = 1,2, 3/2, and 1/2, are given
here.

It is convenient first to introduce the following functions:

2,@=on@)L-0y(n7/2-9)]  Ny@)= [ug:pq;(—ac)x)]

(39)

where [ and o,(a) were defined in (28¢) and (38b),
respectively, and [ is the identity matrix.

Casel, n = 1.
Ny -1 + -1 + Y, - _— O 0
B|=-Nl (ozo )zl (‘10 )Nl(ao) Dl" 0 0
(40)
where o it and £ = In ((1 — cos 3)/sin 3).

Case 2, n = 2:

2 sin 81+ P ag ' - (—ag *)+ (=g O - aq)

; -
. nw
(2 sin 8+ K(ag)) a2 (7—¢'>
(41a)
B, 25ing C@)C (a0 D+ 6(—as NG as) -2])
? 25in 8 + Klag)
(41b)

where af = 7/2 t i, and ag* = ay .
The matrices G(a) and f(a) are given by the following
expressions

G(a) = N; (@2 (a)Nx(e)
Pl)=R; () L2)Nya). (42)

Finally, K(ap) can be written in terms of the functions M(a)
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and D(a, —a*), namely, Cased, n = 1/2:
45(&(;. —QJ‘)D-(“Q(;, ao‘“ 00
=2+ - - B,=-ad D,=
K(ay) M) M(=ag %) (43a). 172 a 172 0 0 (47a)
where where
Dla, ~a*) = ¥u(@¥(~a*) - ¥ @¥s(-a®) 436)  4_ v ¥y ar=Fuit
~ - \Yx + Yy _ /2=’ ) [ -
M@ =¥ (¥~ a)+ ¥y ¥(~a).  (430) @Dionlar) ~ortnn/2=97)] ¢
Note that a* is the complex conjugate of a. ) ) . (470)
Case 3, n = 3/2: and the subscript x is defined in (45a). The column vector
and the row vector v* are given in (44b) and (38b),
Bi= - o't Dy, = uc (44a) respectively:
where REFERENCES
. (1] M. B. Leontovich, Investigations of Propagation of Radio Waves,
P t Q— q* g= a., for Z, = Part I - Moscow, 1918. o . o
= _ =1 -_ = _ for Z,=0" [2] G. D. Maliuzhinets. E{(cﬂat;on. reﬂccqon and emission qf surface
4 ‘_1 Un, 1 waves from.a wedge with given face impedances,’’ Soviet Phys.

Dokl., vol. 3, pp. 752-755, 1959.
(44b)  [3) T. B. A. Senior. “‘Diffraction tensors for imperfectly conducting
edges,”” Radio Sci., vol. 10, pp. 911-919, Oct. 1975.
The column vectors d, and &y are given by {4] ——, “Impedance boundary condition for imperfectly conducting
surfaces,”” Appl. Sci. Res., Section B, vol. 8, pp. 418-336, 1960.
1 0 {S] ——. '*Some problems involving imperfect haif-planes,’ in Electro-
1, = Uy= s (44c) magnetic Scattering, P. L. E. Uslenghi, Ed. New York: Academic,
0 1 1978, pp. 185-219.
[6] A. F. Kay, '‘Scattering of a surface wave by a discontinuity in
and the row vectors ¢* and !* can be written as follows: reactance,”’ IRE Trans. Antennas Propagat., vol. AP-7, pp. 22-31,
- Jan. 1959.
\P . * . [71 G. Tyras, Radiation and Propagation of Electromagnetic Waves.
CTRLACTEL ZCT New York: Academic, 1969.
on(a )V (aX) [8) . Bazer and S. N. Karp, '‘Propagation of plane electromagnetic waves
el e past a shoreline,”” J. Res. Nat. Bureau Standards, D. Radio
{h, if Z,=0 Propagation, vol. 66D, no. 3, pp. 319-334, May-June 1962.
X=

gr=v* {\;(aoz)_

X (45a) [9] O. M. Bucci and G. Franceschetti, **Electromagnetic scattering by a
e, ifZ)=o half-plane with two face impeuances.’’ Radio Sci., vol. 11, pp. 49-59,
. Jan. 1976.
. . { V(ad) [10] ——, *‘Rim loaded reflector antennas,” [EEE Trans. Antennas
tf=v

T ; Propagat., vol. 28, pp. 297-305, May 1980.
dalag ) —an(nx/2-9’) (111 J. J. Bowman, “High frequency backscattering from an absorbing
z + * infinite strip with arbitrary face impedances.'* Canadian J. Phys., vol.

_ L {CTRIXCTR) ACTD) } 45b) 45, pp. 2409-2430, 1967.

- ? * v. . v 'y b i i i o
[0 2) = 0nlnm/2 = ¢ Noaler; ) ¥aler]) e aE ol 34 oot Toag. ™ method in clectromagne
. , . [13] ——, **Electromagnetic diffraction from a right-angled wedge with
where of = —#/4 * if and af = 3x/4 £ i§. Finally, the soft conditions on one face,” Opt. Acta, vol. 28, pp. 293-311, Mar.

row vector ¢ is given by 1981.
-\ (46a) pp. 1199-1210, Sept.-Oct. 1982.
impedance discontinuities on a flat plane.”’ [EEE Trans. Antennas
* ] for the diffraction by a wedge with impedance faces,”* IEEE Trans.
1 dielectric/ferrite half-plane and related configurations,’” Ph.D. disser-
impedance faces and with included angles equal to 0, »/2 and =
1 [19] ——, *‘Wiener-Hopf analysis of the EM diffraction by an impedance
2 [20] P. H. Pathak and R. G. Rojas, ‘‘A UTD analysis of the EM diffraction

€=

1EE

wr=v=¥(ag)
nx
onag)—o, (T-es'

[14] R. Tiberio, F. Bessi, G. Manara, and G. Pelosi, **Scattering by a strip
v- ‘p(a l- 132 Q— e q*‘x'(af )2 Q with two face impedances at edge-on incidence,’* Radio Sci., vol. 17,
Cn (al’ W (a r ) o (a ; )‘I’x(ar ) (15) R. Tiberio and G. Pelosi. ‘‘High-frequency scattering from the edges of
where Propagat., vol. AP-31, pp. 590-596, July 1983.

[16] R. Tiberio, G. Pelosi, and G. Manara, **A uniform GTD formulation

W= [ Antennas Propagat.. vol. AP-33, pp. 867-873, Aug. 1985.
[17) R.G. Rojas, **A uniform GTD analysis of the EM diffraction by a thin
tation, Dept. Elec. Eng., Ohio State Univ., Columbus, Winter 1985.
(18] ——, **A uniform formulation for the EM diffraction by a wedge with
) (oblique incidence),”” presented at the IEEE/APS Symp. and Nat.

Radio Science Meeting, Philadelphia, PA, June 1986.
- (46b) discontinuity in a planar surface and by an impedance half-plane,’’
nx , IEEE Trans. Antennas Propagat., vol. 36, pp. 71-83, Jan. 1988.
op(af)=on | = =90

by an impedance discontinuity in a pianar surface,’’ J. Wave-Material
Interaction, vol. 1, pp. 16-33, Jan. 1986.
and {21] O. M. Bucci, C. Gennarelli, and L. Palumbo, ‘‘Parabolic antennas with
.. a loaded flange,’* IEEE Trans. Antennas Propagat., vol. AP-33, pp.
n=pn=1ifZ,=00r y1=-y=iif Z,= 0. 755-762, 1985.




970

(22]

(231

24

(25]

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 36, NO. 7, JULY 1988

Y. M. Hwang. **The diffraction at the edge of a uniform impedance
surface,”” Ph.D. dissertanon, Dept. Elec. Eng., Ohio State Unmiv.,
Columbus. 1973.

F. C. Karal, Jr., S. N. Karp, J. S. Chu, and R. G. Kouyoumjian,
“Scattering of a surface wave by a discontinuity in the surtace
reactance on a right angled wedge,”* Comm. Pure Appl. Math., vol.
X1V, pp. 35-48, 1961.

I. L. Volakis. **A uniform geometrical theory of diffraction for an
imperfectly conductine half-plane.’” [F7F 7 ns. Antennas Propa-
gat.. vol. AP-34, pp. 172-180, Feb. 1986.

T. B. A. Senior and J. L. Volakis, **Scattering by an imperfect right-
angled wedge,”* [EEE Trans. Antennas Propagat.. vol. AP-34, pp.
681-689. May 1986.

T. B. A. Senior, "*Solution of a class of impertect wedge problems for
skew incidence. '’ Radio Sci.. vol. 21, pp. 185-191, Mar.-Apr. 1986.
H. Lewy. "*Waves on sloping beaches." Bull. Amer. Math Soc.. vol.
52. pp. 737-775, 1946.

1. J. Stoker, “*Surface waves in water of vaniable depth,”” Quart. Appl.
Marha., vol. 5. pp. 1-54, 1947.

[29] 1. J. Bowman, T. B. A. Senior. and P. L. E. Uslenghi. Electromag-
netic and Acoustic Scattering by Simple Shapes (Part 1), North
Holland Publishing Company, 1969.

[30} C. Gennarelli and L. Palumbo, *'A uniform asymptotic expansion of a
typical diffraction integral with many coalescing simple pole singulari-
ties and a first-order saddle point.”* /EEE Trans. Antennas Propa-
gat.. vol. AP-32, pp. 1122-1124, Oct. 1984.

[31] R. G. Rojas, ‘*‘Comparison between two asymptotic methods,”’ [EEE
Trans. Antennas Propagar. ., vol. AP-35, pp. 1489-1492, Dec. 1987.

{32} R. G. Kouyoumjian and P. H. Pathak, **A uniform _eometrical theory
of ditfraction for an edge in a perfectly conducting surface,” Proc.
IEEE, vol. 62, pp. 1448-1461, Nov. 1974.

Roberto G. Rojas (5'80-M'81-5'82-M"85), for a photograph and biography
please see page 83 of the January 1988 issue of this TRANSACTIONS.




2 B B B S N B O = Ee

GENERALISED IMPEDANCE BOUNDARY
CONDITIONS FOR EM SCATTERING
PROBLEMS

Indexing terms: EM field theory, EM waves, Scattering,
Mathematical techmgques

Generalised impedance boundary conditions (GIBC) are
derived for a planar, homogeneous, magnetic dielectric slab
grounded by a perfect electric conducting plane. These
boundary conditions, which are expressed in terms of linear
differential operators of infinite order, reduce to the Wein-
stein boundary conditions in the limiting case of small thick-
ness of the dielectric slab.

Introduction: The motivation of this work arose when an
attempt was made to solve the problem of diffraction of a
plane wave by a magnetic dielectric half-plane of thickness ¢
backed by a perfect electric conducting plane (PEC) as shown
in Fig. 1. Without loss of generality, the medium outside the
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Fig. 1 Grounded magnetic dielectric half-plane
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material is assumed to be free space. The exact solution to this
problem r-quires finding expressions for the fields inside and
outside the material and then matching these two solutions at
the boundary of the slab by means of the boundary conditions
satisfied by the electric and magnetic fields. Since in scattering
problems one is interested in solving for the fields outside the
material, it is convenient to replace the grounded slab by a set
of equivaleat boundary conditions. That is, the original con-
figuration in Fig. 1 can be replaced by the two-part configu-
ration depicted in Fig. 2, where the boundary conditions for
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Fig. 2 Two-part planar configuration

x>0, y =0 can be expressed in terms of linear differential
operators. Weinstein' appears to be the first to obtain a set of
boundary conditions for the configuration illustrated in Fig. 1
(x > 0. y = 0). Basically, Weinstein’s procedure involves the
transfer of the boundary conditions from the plane y =0,
where E_=E_ =0, to the plane y=1t", just outside the
material, by means of a Taylor series expansion in powers of t.
Next. the new boundary conditions are transferred back to the

= () plane by means of another Taylor series expansion

assuming that the medium in 0 < y <, x > 0 is free space.
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Weinstein'! only kept terms of Ot} in his expansion, and thus,
his boundary conditions are valid for a very thin slab.
Bernard? generalised the Weinstein procedure for the special
case when the fields have no z-dependence (6/éz = 0) and
obtained a boundary condition for the field H, at the plane
y =t. The purpose of this paper is to obtain GIBC at the
plane y = 0 for the general case where the fields also depend
on z. Note that it is convenient for analysis purposes to obtain
GIBC at the y =0 plane rather than the y =t plane. The
GIBC developed here are accurate to O(t¥) where M is arbi-
trarily large. Actually, the results obtained here are valid for
M — o because the GIBC are expressed in terms of infinite
order linear differential operators.

Generalised impedance houndary conditions (GIBC): The first
step in finding the GIBC for the geometry shown in Fig 1
(x>0, y =0) is to expand the fields E, and E, in a Taylor
series centred at y = ¢t ~, namely

E‘(\)—Zj_'w i }“—') oOsv<t ()

n=1

Evaluating eqn. 1 at y = 0, where £, = E, = 0, and with the
help of Helmholtz and Maxwell equations one obtains two
very complicated expressions in terms of the tangential com-
ponents E_, E_. H_ ana H,. Following the Weinstein method.
these two equations are transferred to the y =t~ plane (by
applying the boundary conditions satisfied by the fields at
y = t) and eventually to the y = 0 plane by means of another
Taylor series expansion. It turns out that by appropriately
combining the two expressions, two decoupled boundary con-
ditions can be obtained in terms of E, and H . namely

{:7 ZY ) + iko o L‘(«V,:)}H, = y=0 x>0 (2a)
and

¢ k
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Note that k, and 5, are the free-space wavenumber and
intrinsic impedance, respectively, and N = {/(¢, 11, is the index
of refraction. Also, £, and p,, which are assumed to be complex
constants, are the relative permittivity and permeability of the
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slab, respectively. Furthermore, the notation cos (.) and sin
(.) should be interpreted as follows

© 2n
cos ()= Z(—l)’li

"0 (2n)! .

(.)210 1

sin(.) = .’go( Y T @
Note that for the special case when the fields have no :-
dependence (d/dz = 0), the GIBC in eqns. 2a and b can be
expressed in terms of E, and H,, respectively.

From egn. 2, it is possible to obtain boundary conditions of
O(t™), where M > 1. This is done by keeping only terms of
O(t") in the series representation of [** and Z**. That is, eqn.
2a can be ¢ pproximated by

M an
{.Z a M) E};}H,

=0
M3
=11 (Ty*iko'lo’::(M)>Hy=0 (5a)
A=l \

and eqn. 2b by

M+t an
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where the coefficients a, and b, are obtained from eqns. 2-3.
When M =1, eqns. 5a and b reduce to the boundary condi-
tions obtained by Weinstein, i.e.,

F
(,— + ikg 1o A;(l))H, =0
éy

-1
) = —
A= Seamon, < D (6
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) = — — )
H =73 {l * (’ * &V, 1)) (6b)

where K* = (iko (1 — 1/¢,))"*. Finally, when ¢, —1 eqn. 6b
also reduces to the Leontovich boundary condition where
-h rie

A = 1750,

Conclusion: GIBC are obtained for a planar magnetic dielec-
tric slab backed by a PEC plane. These boundary conditions
are written in terms of linear differential operators of infinite
order. It turns out that the GIBC can be decoupled into two
equations in terms of E, and H, only. This result is not sur-
prising since it is shown in Reference 3 that the exact Fresnel
reflection coefficient for the PEC-backed slab depicted in
Fig. I can be expressed in terms of E, and H, only. Note that
boundary conditions of O(t*) can be obtained from the GIBC
by keeping terms of O(t™) in the series expansion of the linear
differential operators [* and Z**. These boundary conditions
are very useful because they simplify the analysis of canonical
diffraction problems as the one illustrated in Fig. 1. Finally, it
should be emphasised that the GIBC developed here recovers
the exact Fresnel reflection coefficient for the grounded siab
depicted in Fig. 1.
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GalnP/AlGainP
DOUBLE-HETEROSTRUCTURE LASER
GROWN ON A (111)B-ORIENTED GaAs
SUBSTRATE BY METALORGANIC
CHEMICAL VAPOUR DEPOSITION

Indexing terms: Semiconductor lasers, Semiconductor growth,
Vapour deposition

Room temperature continuous-wave operation of a
Ga,.In, (P/(Al, ;Gay.g)p sIng P double-heterostructure
laser grown on a (111)B-oriented GaAs substrate by metal-
organic chemical vapour deposition was obtained for the first
time. The threshold current was 9 mA. The emission wave-
length was around 650nm, which was about 30nm shorter
than that of a similar laser grown on a (100)-oriented GaAs
substrate.

Although the stable operation of a 680nm-band GalnP:
AlGalnP double-heterostructure (DH) laser grown by metal-
organic chemical vapour deposition (MOCVD) for more than
2000 hours at 50°C has been reported,' the 684 nm emission
wavelength of the laser was about 30nm longer than the
650 nm wavelength emitted by lasers grown by other methods.
It has been shown that the difference between the two wave-
lengths can be attributed to ordering of the elements on the
column III sublattice.? Several groups have investigated the
order of the elements and verified that 1/2 (111) ordering
occurs in GalnP layers grown on (100) GaAs by MOCVD.*-*
Because the formation of an ordered structure is accompanied
by a decrease in bandgap energy of up to 70meV, the emis-
sion wavelength of a laser with an ordered crystal is longer
than that of a laser with a disordered crystal. If the ordering in
the crystal can be suppressed, the emission wavelength can be
shortened to about 650nm. This shortening of wavelength
(A4 ~ 30nm) corresponds to the extent the wavelength can be
shortened by substituting an (Aly.,¢Ga.g4)0.5INo.sP active
layer for a Gag.4Ing sP active layer. However, because the
threshold current tends to increase with increasing AlP
content in the active layer,® shortening the emission wave-
length by suppressing the ordering, not by adding AIP in the
active layer, is a promising method for growing lasers with
low threshold current.

Recently, we have established by transmission electron
microscopy and photoluminescence measurements that
GalnP and AlGalnP grown on (111)B GaAs by MOCVD
show no trace of ordering. Therefore, a disordered crystal can
be obtained simply by growing it on a (111)B GaAs substrate
by MOCVD.

In this letter, we report on the first GalnP/AlGalnP DH
laser which was grown on a (I11)B GaAs substrate by
MOCVD.

The epitaxial layers were grown on a Si-doped (111)B GaAs
substrate tilted 2° towards the (110) direction by atmospheric
pressure MOCVD using ethyl-organometallics, phosphine,
and arsine as source materials. The growth temperature of
680°C and the V/III ratio of 340 were the same as those for
the DH lasers grown on (100) GaAs substrates. The p-type
dopant was dimethylzinc and the n-type dopant H,Se, but the
amount of H,Se was reduced by a factor of seven compared
with that used in growth on (100) substrates, because the
dopiag efficiency of Se-doped AlGalnP on the 2° off (L11)B
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Simple Examples of the Method of Moments in
Electromagnetics

EDWARD H. NEWMAN, SENIOR MEMBER, IEEE

Abstract—The purpose of this paper is to present three simple ex-
amples of the method of moments in electromagnetics. The examples
shown are the input impedance of a short dipole, plane wave scattering
from a short dipole, and two coupled short dipoles. The relative sim-
plicity of the examples is a direct result of obtaining simple expressions
for the elements in the method of moments impedance matrix.

I. INTRODUCTION

HE METHOD of moments (MM) is a numerical pro-

cedure for solving a linear operator equation by trans-
forming it to a system of simultaneous linear algebraic
equations, commonly referred to as a matrix equation.
Since Harrington's classic paper [1] and book [2] there
has been a virtual explosion of research and engineering
involving the application of the MM to electromagnetic
radiation and scattering problems. It is safe to say that
most universities with a strong graduate program in elec-
tromagnetics include the MM in their curriculum,

In introducing a new subject to a student, there is noth-
ing as valuable as a simple and yet meaningful example
which can be solved in 2 short period of time. The pur-
pose of this paper is to present such an example for the
MM in time harmonic electromagnetics. The example
chosen is the radiation and scattering from an electrically
short, perfectly conducting dipole antenna. This example
is chosen because the short dipole i> probably the simplest
of all antennas, and thus the student is most likely to have
a feel for its characteristics. The MM solution employs
the piecewise sinusoidal expansion and weighting func-
tions. This choice was made for two reasons. First, the
piecewise sinusoids constitute a rapidly converging basis
set for the currents on a thin wire. Thus, reasonable re-
sults can be obtained with only three modes on the wire.
Due to the symmetry of the dipole current, one unknown
can be eliminated and we will need to deal with matrices
of size 2 X 2. Second, for the short dipole the elements
in the MM matrix equation can be approximated in terms
of simple functions typically found on 2 scientific calcu-
lator.

Section II outlines the MM solution for the current on
a dipole antenna. The presentation is brief, and the reader
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is referred to several books [2]-[6] as well as hundreds of
articles in such journals as the IEEE TRANSACTIONS ON
ANTENNAS AND PROPAGATION for the details and limita-
tions of the method. Of the many papers, the author rec-
ommends Harrington’s description of the MM [1], Rich-
mond’s description of the solution of scattering problems
using a system of linear equations [7], and Tsai and
Smith’s particularly simple explanation of the MM [8].
Section II also presents simple expressions for the ele-
ments in the MM matrix equation. Based upon these
equations, Section IIl presents three simple examples
which can be worked in about one hour. These include
the input impedance of a short dipole, plane wave scat-
tering from a short dipole, and two coupled short dipoles.

II. THEORY
A. The Integral Equation

Fig. 1(a) shows the basic problem to be solved. Here
we have a perfectly conducting dipole of length L and
radius a in free space with constitutive parameters ( u, €).
The dipole is illuminated by the fields of the known im-
pressed electric and magnetic currents (J', M'). In this
paper, all fields and currents are considered to be time
harmonic with the e’ time dependence suppressed. \ will
denote the free space wavelength. In the absence of the
dipole, the impressed currents radiate the assumed known
incident electric and magnetic fields (E’, H'). In the pres-
ence of the dipole, the impressed currents radiate the un-
known total fields (E', H').

As illustrated in Fig. 1(b), the first step in obtaining an
integral equation for the currents on the dipole is to use
the surface equivalence principle [9] to replace the dipole
by free space and by the electric surface current density

J=A"xH (1)

J exists on the entire surface § which encloses the dipole
and has outward normal R. The use of the equivalence
principle is central to the development of the integral
equation for J since it allows us to deal strictly with the
fields of sources in free space. In the equivalent problem
of Fig. 1(b), the total fields are produced by (J', M') and
J radiating in foes space. In free space, J radiates the so-
called scattered fields defined by

E‘=E' - E' (2)
H =H - H (3)

L
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Fig. 1. (a) The geometry for a perfectly conducting dipole illuminated by
the impressed currents. (b) The equivalent probiem in which the dipole
is replaced by free space and by equivalent electric currents flowing on
its surface.

An equation for J is obtained by enforcing the boundary
condition that the total electric field tangential to the sur-
face S must vanish, i.e.,

AX(E'+E)=0 onS. (4)

Equation (4) is an integral equation for J written in sym-
bolic form since the scattered electric field E* can be writ-
ten as an integral over § of the dot product of J and the
dyadic free space Green’s function [10].

For a thin-wire dipole, whose radius 2 << A, the fol-
lowing simplifications are made:

1) The current on the endcaps of the wire is ignored.

2) The longitudinal component of current J, is much
greater than the circumferential component J,. Thus, we
ignore J,. As a consequence, (4) is applied only to the £
components of the electric fields.

3) Instead of enforcing (4) on the surface S, we will
enforce it on the center line of the dipole. This is reason-
able since the center line is electrically so close to the
surface; however, we note that this approximation can re-
sult in the numerical problem of relative convergence [11]).

With these approximations, we are solely interested in
the £ component of all electric fields and currents. Thus,
the vector notation will now be dropped and the £ com-
ponent is understood. For example, the vector (4) now
reduces to the scalar equation

~E! = El
In the next section, (5) will be solved using the MM.

on the dipole center-line. (5)
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Fig. 2. An example showing three piecewise sinusoidal dipole modes on
a dipole which has been split into four equal segments.

B. MM Solution of the Integral Equation

Instead of solving (5) for the surface current density J,
it is more convenient to solve for the total current

1(z) = 2%aJ (2). (6)

The first step in the MM solution is to expand the un-
known current in terms of some basis set. Thus, we write

N
I(2) = % LF, (7

where the I, are a sequence of N unknown complex coef-
ficients, and the F, are a sequence of N known modes or
basis functions. In our case, we choose the F, as the
piecewise sinusoidal dipole modes used by Richmond
{12]. For example, Fig. 2 shows a dipole of length L split
into four equal segments of length d = L/4. In Fig. 2,
the segment numbers are shown circled. Segment n goes
from z, to z,.;- The piecewise sinusoidal modes are
placed on the dipole in an overlapping fashion with mode
n existing on segment n and n + 1. Mode n has endpoints
z, and z, .., and center or terminals at z, ., . F, is a fila-
ment of electric current, iocated at radius a from the wire
center line (i.e., on the surface of the wire) and with cur-
rent

(8)

in which k = 2x /X is the free-space wavenumber. F,(z)
is zero at its endpoints and rises sinusoidally to a maxi-
mum at its center with terminal current of Fo =
Fo(Zs+1) = 1 A. Note that the piecewise sinusoidal modes
produce a current which is continuous on the wire and
also zero at the dipole endpoints [3]. Since the expansion
modes have unit terminal current, the dipole current at
Za+1 is I, amps (except at the dipole endpoints where the
current is always zero). Equation (8) produces a sinuso-
idal interpolation of the current values at the N + 2 points
on the dipole.
Substituting (7) into (5) yields

N
- 2‘ I,LE! = E' on the dipole center-line  (9)

o1
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where E; is the free-space £ component of the electric
field of F, and is available in terms of simple functions
[13], [14].

The weighting functions in the MM solution will be
chosen identical to the expansion functions, except that
they are located along the center line of the dipole. This
is because we chose to enforce (5) on the center line. The
next step in the MM solution requires an inner product.
We will define the inner product between the functions

f(z)and g(z) as

L
(f(2). 8(2)) = Sof(Z)g(Z)dz

where i integration is over the length of the dipole. Now
taking the inner product of both sides of (9) with the se-
quence of N weighting functions F, (m = 1,2, -+ -,
N ), (9) becomes an N X N system of simultaneous linear
algebraic equations which can written compactly in ma-
trix form as

[z}l = v. (10)

Here [ is the current column vector whose N components
hold the 1, of (7). [Z] is the N X N impedance matrix
whose typical term is

Zpy = -g E.F, dz. (11)

For the dipole, the [Z ] matrix is symmetric and also
toeplitz since Z,, is only dependent upon |m — n|. In
general, [ Z ] is dependent upon the geometry and material
composition of the scatterer, but not on the incident fields.
A typical element of the right-hand side or voltage vector
V is given by

v, = S E'F, dz. (12)

The integrations in (11), (12) are on the dipole center
line, and over the extent of F,, i.e., from z = z, to
Zm+2. The dimensions of the elements of [Z] and V are
volt-amps (VA), while the elements of / are dimension-
less. If the Z,,, were divided by F, o F,q, then the Z,,, would
have dimensions of ohms. Since in our case the modal
terminal currents are F,; = 1 A, our Z,, can be con-
sidered to have the dimensions of ohms. In any case, the
{Z ] matrix is usually referred to as an impedance matrix
and V as a voltage vector since the matrix (10) resembles
an N port generalization of Ohm’s law.

As N = the number of terms retained in the expansion
for the current increases, the MM solution should ap-
proach the exact result. In order to obtain results suitable
for engineering accuracy, typically N = 4-10 piecewise
sinusoidal modes per wavelength of wire are required. As
the electrical length of the wire increases, N must increase
and thus so does the computer CPU time and storage
needed to set up and solve the matrix equation (10). For
this reason, MM solutions are often referred to as low-
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frequency solutions, which are applicable when the an-
tenna or scatterer is not too large in terms of a wave-
length.

C. Simple Expressions for Z,,, and V,,

Simple Expressions for Z,,,: The major problem in an
MM solution is usually the evaluation of the elements in
the impedance matrix. Usually this involves numerical in-
tegrations and/or the evaluation of special functions. As
a result, most MM solutions are done on a digital com-
puter and require a great deal of programming time and
effort. For this reason, most MM solutions are not suita-
ble as a simple example problern which can be accom-
plished in about an hour using only a scientific calculator.
Below we will present relatively simple expression for the
elements in the dipole MM impedance matrix, thus elim-
inating the need for a digital computer to carry out the
MM solution to the examples given in the next section.

For the dipole antenna, the elements in the impedance
matrix, as given by (11), are the mutual impedance be-
tween paralle! piecewise sinusoidal dipole modes. Fig. 3
shows two parallel piecewise sinusoidal dipole modes of
length 2d. The bottom of weighting mode m is located a
distance h above the center of expansion mode n, and the
modes are staggered by the distance r. For convenience,
the expansion mode has its center at z = 0. Exact expres-
sions for the mutual impedance between these modes has
been given by King [14]. Unfortunately, King’s expres-
sions are very lengthy and also require the evaluation of
sine and cosine integrals. In order to simplify King's
expressions, we will assume that the modes are electri-
cally small and electrically close. This will always be the
case for modes on an electrically short dipole. Specifi-
cally, if we assume that kd, kh, and kr are all <<, then
in the Appendix we show that King’s expressions for the
mutual impedance between modes m and n reduce to

Zow = Rpp + jXn (13)
where the real and imaginary parts of Z,, are given by
R, = 20(kd)’ (14)
30
Xpo = -k—P[—4A+6B—4C+D

+ E + 4hin (24 + 2h)

—~ 6(d + h)In (2B + 2h + 2d)

+4(2d + h)In (2C + 2h + 4d)

+(d=h)In(2D + 2h — 2d)

—(3d + h)In(2E + 2h + 6d)] (15)
where

>A = Nr°+ h
B=Nrl+(d+h)

C=~Nrt+(2d+h)
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Fig. 3. Geometry for the mutual impedance between two parallel piece-
wise sinusoidal dipoles.

D=~Nr+(d-h)

E=~rt+(3d + n).

Equations (14) and (15) can be said to be suitable for a
scientific calculator since they involve no operations more
complicated than the natural log and square root. Note
that R, is the well known formula for the radiation resis-
tance of a short dipole and is independent of mode sepa-
ration. Equation (15) will further simplify if we assume r
= g << d (the wire radius is much less than the segment
length) and also consider certain special values of A. For
self-impedance terms m = n and

Xo(h = —d) = —2—3[-4 +4n(d/a)]. (16)

For adjacent modes with one overlapping segment |m —
n| = 1 and

Xp(h = 0) = -3[1 +21n(1.54a/d)]. (17)

If [/m — n| = 2, then the modes share a single point and
30

Xon(h = d) = —--,“—i[—o.cs]. (18)

If /m — n| 2 3, then the modes are not touching and

_ 30k h(2d + h)‘
Xom(h = 2d) kd[d (d + h)'(h — d)(3d + h)

(2d + h)'(h - d)
tn (d + h)'(3d + h)’]' (19)

Voltage Generators: Now consider the evaluation of
the right-hand side vector V. As seen in (12), V is depen-
dent upon the £ component of the incident electric field.

First, consider the case where the dipole is excited by
a voltage generator. The simplest and probably the most
commonly used model for a voltage generator is the so-
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called delta-gap model [3]. A delta-gap generator is une
which creates an extremely large, but highly localized
electric field polarized parallel to the wire center-line. A
v volt delta-gap generator located at z = 7’ has the inci-
dent field

E'=vé(z~-2) (20)

where §(z) is the unit area Dirac delta function. Nor-
mally, the generators are placed at the center or terminals
of the piecewise sinusoidal modes. Thus, referring to Fig.
2 for a dipole with N = 3 modes, the generator could be
placed at points 2, 3, or 4 which would be at the terminals
of modes 1, 2, or 3, respectively. Inserting the incident
field from (20) into (12) shows that if a delta-gap gener-
ator of v, volts is placed at the terminals of mode m, then

V, = v, (21)
Element m of V is nonzero only if a nonzero generator is
placed at the terminals of mode m.

Lumped Loads: Now consider the effect of placing a
lumped load in the wire. A lumped load of Z,, ohms,
placed at the terminals of mode m, will produce a voltage
of —1,2Z,, volts at these terminals. If we treat this voltage
as a dependent delta-gap generator, then according to (21)
we should add -171,2Z,, to V,,. However, this is an un-
known voltage since initially /,, is unknown. Since it is
conventional to write all unknowns on the left-hand side
of the matrix equation, we add 7, Z,, to both sides of row
m of the matrix equation. Thus, it can be seen that a
lumped load of Z,, ohms placed at the terminals of mode
m simply results in Z,, being replaced by Z,, + Z,,.

There is no physical break or gap in the wire where a
generator or load is placed. Thus, the current is continu-
ous through generators and loads. There is a slope dis-
continuity, or jump in the derivative of the current, at the
generator or load. Note that the piecewise sinusoidal
modes account for this behavior by enforcing continuity
of current on the wire and by allowing a slope disconti-
nuity at their terminals.

Plane Wave Excitation: Next consider the situation

- where the wire is excited by a normally incident plane

wave. If a £ polarized plane wave is incident from the +x
axis with magnitude Eg, then

E' = Eye'*™, (22)
Inserting (22) into (12) and integrating yields
= Zfi’um (kd/2). (23)

II. NUMERICAL EXAMPLES
A. Example 1—Dipole Input Impedance

In Example 1, we compute the current distribution and
input impedance of a center fed dipole antenna. Referring
to Fig. 1(a), we will consider a dipole of length L = 0.1
m, radius @ = 0.0001 m, and at a frequency of 300 MHz
or A = 1 m. As illustrated in Fig. 2, we willuse N = 3
piecewise sinusoidal modes on the dipole, and segment
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the dipole into N + 1 = 4 equal segments of length d =
L/4 = 0.025 m. In this case the 3 X 3 MM matrix (10)
can be explicitly written as

Zy Z,, Zy || V
Zy Zy Zn || L= V2| (24)
Zy Zy, Zn || K Vi

Since the current on the center fed dipole will be sym-
metric, /, = I;. In this case, we can add column 3 of the
matrix equation to column 1 and reduce the order 3 matrix
equation to the order 2 matrix equation

[(Zn + Z3) ZlZ:H:II:| N [Vl] (25)
(Zy) + Zn) Znilh V2
Reducing the order of the matrix equation from 3 to 2
greatly reduces the effort in the hand calculations required
to solve the matrix equation.

Although [Z] in (24) and (25) contain nine elements,
only three are distinct since from the symmetry of the di-

pole

2, =12y =2y
2, =2y =2y =125
Zy =1,

The real part of each Z,, is given by (14) as
R,, = 0.4935 VA.

The imaginary part of the Z,,, can be computed from
(15); however, here we choose to use the simpler (16)-
(18). Table I shows the elements in the first row of the
{Z ] matrix of (24) computed by (13), (16)-(18) and by
King's exact expressions [14], {15]. Note that the approx-
imate values of [Z] are within 11 percent of the exact
values.

If the approximate values of [Z ] from Table I are sub-
stituted into (25) we obtain

[0.9869 - j3324 0.4935 + j1753][1.] [o]
0.9869 + j3506 0.4935 — j34s4 || 1,] |1

(26)

where we have set V, = 1 VA since there is a 1 V gen-
erator at the terminals of mode 2. Equation (26) can be
easily solved using Cramer’s rule. The results for the ele-
ments in the dimensionless current vector are

I, = I, = 0.0003286 « 89.892°
1, = 0.0006230 « 89.926°.

The dipole current can now be obtained by inserting
these coefficients into (7) with N = 3. The dipole current
will have dimensions of amps, since the expansion modes
F, have dimensions of amps. Also, since the current ex-
pansion modes have a terminal current of 1 A, 1, is nu-

197
TABLE 1
EXAMPLE | ELEMENTS OF THE [Z ]} MATRIX (VA)
Element Approximation Exact
Z, 0.4935 — j3454 0.4944 — 3426
z, 0.4935 + 1753 0.4945 + j1576
Z,, 0.4935 + j129.9 0.4885 + j132.2

merically equal to the current in amps at the center of
mode m. Thus, the dipole input or terminal current is I,
A. The input impedance is given by the ratio of the input
voltage to the input current, i.e.,

Z, = 1/I, = 2.083 — j1605 Q.

By contrast, if we were to use the exact values of {Z)
from Table I, then the results for the current distribution
and input impedance would be

I, = I; = 0.0002498 2 90.0°
I, = 0.0005219 2 89.9°
Z, = 1.892 — j1916 Q.

B. Example 2—Scattering from a Dipole

In Example 2, we will compute the broadside piane
wave scattering from the same dipole considered in the
above example, except that it is terminated in a conjugate
matched load. To terminate the dipole in its conjugate
matched load, we place a lumped load of Z}} at the center
of the dipole, i.e., at the terminals of mode 2. Using the
value of Z;, computed above,

Z, = Z*% = 2.083 + j1605 Q.

As discussed in Section II, the impedance matrix for
the loaded dipole is identical to that of the unloaded di-
pole except that we add Z;, to the self-impedance of mode
2 to obtain

Z,, = (0.4935 — j3454) + (2.083 + j1605)
= 2.576 — j1849 VA.

If the incident electric field is a unit amplitude, £ po-
larized plane wave incident from the +x axis, then the
elements of the right-hand side vector are identical and
given by (23) with E;, = 1,

Ve =002505VA m=1,2,3.

Since the excitation and loading of the antenna are sym-
metric with respect to the center of the dipole, the current
on the dipole remains symmetric. Thus, the current vector
can still be computed from the order 2 matrix (25),

[0.9869’.— j3324 0.4935 + 11753][1.]
0.9869 + j3506 2.576 — j1849 ]|/,

[o.msos]
= : (27)
0.02505
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Equation (27) can be soived using Cramer’s rule. The re-
sults for the elements in the dimensionless current vector
are

1, = I, = 0.006515 £ 0.581°
I, = 0.01235 2 0.548°.
The scattered field is given by

N
E' = ZI I,E: (28)

where as in (9), E; is the free-space electric field of ex-
pansion mode F,. For a field point on the +.x axis (i.e.,
in the backscatter direction) and in the far-zone of the di-
pole, E; will be £ polarized and given by

P

E; = j60 tan (kd/2) —— V/m. (29)

Using (29) and the above values for the I,, the far-zone
backscattered electric field is

e
E* = 0.1199 290.6° - V/m.
The radar-cross-section of the dipole is
(2
2 [E|
3
| Eo

By contrast, if we were to repeat this example with the
exact values of [Z ) from Table I, the results would be

= 0.1806 m’.

(30)

o = 4xx

I, = I, = 0.006199 £0.0°
I, = 0.01295 20.0°
o = 0.1801 m?.

C. Example 3—Coupled Dipoles

In Example 3, we analyze the mutual coupling between
two short dipoles. As illustrated in Fig. 4, the dipoles are
identical to that considered in the Example 1 above (L =
0.1 m, a = 0.000f m, and f = 300 MHz), and are sep-
arated by a distance s = 0.01 m. Here we wish to compute
the input impedance of dipole 1 in the presence of dipole
2. To minimize the computations, we will place only one
piecewise sinusoidal mode on each dipole. Thus, the or-
der N = 2 matrix equation for this problem is

[zl. zu][ll] ~ [V.}
Zy Zpllh V:
Only Z,, and Z,, need be computed since from the sym-
metry of the dlpoles 2z, = 222 and 2y =2y Z|| is eval-
uated from (14) and (16) withd = —h = L/2 = 0.05 m
and r = a = 0.0001 m. Z;; is evaluated from (14) and
(16) with a replaced by s = 0.01 m since A = —d. The
results for Z,; and Z,, are showa in Table II where they

are compared with the exact values [14], (15]).
Inserting the approximate values from Table II into (31)

- (31)
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Fig. 4. Geometry for the two coupled dipoles in Example 3.

TABLE II
EXAMPLE 1II ELEMENTS OF THE [Z ] MATRIX (VA)
Element Approximation Exact
Z, 1.9739 — j1992 2.0000 ~ j1921
2. 1.9739 — j232.8 1.9971 — j325.1
we obtain
1.9739 — j1992 1.9739 — j232.8 || I, 1
[1.9739 - j232.8 1.9739 — j1992 Mlz] - [0]'
(32)

In (32) we have set V; = | since to compute the input
impedance of dipole 1 we place a 1 V generator at the
terminals of mode 1. Equation (32) has the solution

I, = 0.0005090 2 89.955° and

5, = 0.00005949 . — 89.616.
The input impedance is '
Zy = 1/, = 1.539 — j1964 Q.

In the absence of dipole 2, the N = | mode solution for
the input impedance of dipole 1 is numerically equal to
Z,,. Thus, in the absence of dipole 2, the input impedance
of dipole 1 would be 1.9739 — 1992 Q.

If the exact values of {Z] in Table II were used, then
the input impedance of dipole 1 in the presence of dipole
2 would be 1.382 — j1866 Q.

IV. SuMMARY

The purpose of this paper has been to present simple
examples of the method of moments (MM) in time har-
monic electromagnetics. By simple it is meant an example
which can be worked in about an hour with a scientific
calculator. Such examples are not common because typi-
cally MM solutions require dealing with relatively large
systems of simultancous equations. Also, the evaluation
of the elements in the MM matrix equation usually require
cither numerical integrations or the evaluation of special
functions. By contrast, the examples shown here required
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dealing with matrix equations of size 2 X 2, required no
numerical integrations, and involved no special functions
not commonly found on a scientific calculator. It is hoped
that these examples will be of value in a graduate or senior
level course in applied electromagnetics.

The examples chosen involved the radiation and scat-
tering by an electrically short thin-wire dipole or pair of
dipoles. These examples were chosen because of the geo-
metric simplicity of the dipole, and also because there is
a reasonable chance of the student being familar with the
basic characteristics of the short dipole. The MM solution
used the piecewise sinusoidal modes. This choice was
made for two reasons. First, approximate expressions
were obtained which allowed the elements of the MM
impedance matrix to be evaluated from simple expres-
sions involving only the log and square root functions.
Second, on a dipole, this choice results in a very rapidly
converging MM solution. This permitted reasonably ac-
curate results to be obtained with only three unknowns,
and using the symmetry of the dipole current 2 X 2 ma-
trices.

APPENDIX
Derivation of Z,,,, in (14) and (15)

The main factor which allowed the examples in Section
III to be easily evaluated was that the elements of the
impedance matrix were expressed in (14) and (15) in rel-
atively simple form. In this Appendix we will outline the
derivation of (14) and (15). Z,,, is defined by (11).

Fig. 3 shows modes m and n staggered by the distance
r and with the bottom of mode m at a height h above the
center of mode n. For convenience, the center of mode n
is at z = 0. The two modes have identical segment length
d and piecewise sinusoidal current given by (8). The exact
£ component of the electric field of F, at a point on F,, is
given by [13], [14]

s 30 e Mk e 7Hn
E. = sin kd [ ~J —J

ry r

e-jkro’
+ j2 cos kd } (33)
ro

where as seen in Fig. 3

ro=<vri +z (34)

Vrt 4 (d - 2y (35)
Vri 4+ (d + z)z. (36)

Note that the electric field of a sinusoidal dipole apnears
to be three spherical waves emanating from its endpoints
and terminals. Equation (11) for Z,, now becomes

r

r

1 h+d
— -sinkd[g;. E,sink(z — h)dz

h+2d
+ S E:sink(2d+h—z)dz] (37)
h+d
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with E; given by (33). King [14] showed that (37) can be
integrated exactly. Unfortunately, the result is a very
lengthy expression which requires the evaluation of many
sine and cosine integrals. Thus, although King's expres-
sion are well suited to programming on a digital computer
[15], they are not as suitable for calculations with a hand
calculator.

In order to obtain a relatively simple result from (37)
we assume kd, kr, and kh are all << 1. In this case, the
following small argument approximations are valid:

sink(z — h) = k(z ~ h)
sink(2d + h - z) = k(2d + h — 2)
sin kd =~ kd
e = 1 — jkr, + j(kr,)3/6
i=0,1,2.

Using these approximations, (37) can be integrated [16]
to yield (14) and (15). Although (15) is still rather lengthy,
it can be further simplified to (16)~(18) for the examples
in Section IiI.
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